Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-Methoxycinnamaldehyde is a natural chemical compound derived from certain plant species, such as cinnamon and basil. It is known for its distinct flavor and fragrance, as well as its antibacterial and antifungal properties. This versatile compound also exhibits potential therapeutic benefits, including anti-inflammatory and anti-cancer properties, making it a promising candidate for drug development.
Used in Flavor and Fragrance Industry:
3-Methoxycinnamaldehyde is used as a flavor and fragrance ingredient for its distinct aroma and taste, adding unique characteristics to various food, cosmetic, and personal care products.
Used in Cosmetic and Personal Care Industry:
3-Methoxycinnamaldehyde is used as a preservative and antimicrobial agent for its antibacterial and antifungal properties, ensuring the safety and longevity of cosmetic and personal care products.
Used in Pharmaceutical Industry:
3-Methoxycinnamaldehyde is used as a potential therapeutic agent for its anti-inflammatory and anti-cancer properties, with ongoing research exploring its use in developing new drugs for various medical conditions.

56578-36-0 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 56578-36-0 Structure
  • Basic information

    1. Product Name: 3-Methoxycinnamaldehyde
    2. Synonyms: 3-Methoxycinnamaldehyde;3-Methoxycinnamic aldehyde;(E)-3-(3-Methoxyphenyl)-2-propenal;(E)-3'-Methoxycinnamaldehyde;(E)-3-(3-Methoxyphenyl)acrylaldehyde
    3. CAS NO:56578-36-0
    4. Molecular Formula: C10H10O2
    5. Molecular Weight: 162.19
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 56578-36-0.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: 296℃
    3. Flash Point: 138℃
    4. Appearance: /
    5. Density: 1.068
    6. Vapor Pressure: 0.00145mmHg at 25°C
    7. Refractive Index: 1.559
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. CAS DataBase Reference: 3-Methoxycinnamaldehyde(CAS DataBase Reference)
    11. NIST Chemistry Reference: 3-Methoxycinnamaldehyde(56578-36-0)
    12. EPA Substance Registry System: 3-Methoxycinnamaldehyde(56578-36-0)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 56578-36-0(Hazardous Substances Data)

56578-36-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 56578-36-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,6,5,7 and 8 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 56578-36:
(7*5)+(6*6)+(5*5)+(4*7)+(3*8)+(2*3)+(1*6)=160
160 % 10 = 0
So 56578-36-0 is a valid CAS Registry Number.
InChI:InChI=1/C10H10O2/c1-12-10-6-2-4-9(8-10)5-3-7-11/h2-8H,1H3/b5-3+

56578-36-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(3-methoxyphenyl)prop-2-enal

1.2 Other means of identification

Product number -
Other names meta-methoxycinnamaldehyde

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:56578-36-0 SDS

56578-36-0Relevant articles and documents

Discovery of novel diphenylbutene derivative ferroptosis inhibitors as neuroprotective agents

Fang, Yuying,Gu, Qiong,Tan, Qingyun,Xu, Jun,Zhou, Huihao

, (2022/02/05)

Ferroptosis is a regulated and iron-dependent cell death. Ferroptosis inhibitors are promising for treating many neurological diseases. Herein, with phenotypic assays, we discovered a new diphenylbutene derivative ferroptosis inhibitor, DPT. Based on this hit, we synthesized fourteen new diphenylbutene derivatives, evaluated their ferroptosis inhibitory activities in HT22 mouse hippocampal neuronal cells, and found that three compounds exhibited improved inhibitory activities compared with DPT. Among these active compounds, compound 3f displayed the most potent anti-ferroptosis activity (EC50 = 1.7 μM). Further studies demonstrated that 3f is a specific ferroptosis inhibitor. And we revealed that different from the classic ferroptosis inhibitors, 3f blocked ferroptosis by increasing FSP1 protein level. Moreover, 3f can penetrate blood-brain barrier (BBB). In a rat model of ischemic stroke, 3f effectively mitigated cerebral ischemic injury. Therefore, we are confirmed that 3f, as a novel ferroptosis inhibitor with a new scaffold, is promising for further development as an agent against neurological diseases.

Method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and diphosphine ligand used in method

-

Paragraph 0140-0145, (2021/05/29)

The invention discloses a method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and a diphosphine ligand used in the method. According to the invention, indole-substituted phosphoramidite diphosphine ligand which is stable in air and insensitive to light is synthesized by utilizing a continuous one-pot method, and the indole-substituted phosphoramidite diphosphine ligand and a rhodium catalyst are used for jointly catalyzing to successfully achieve a hydroformylation reaction of aromatic terminal alkyne and terminal conjugated eneyne under the condition of synthesis gas for the first time, so that an olefine aldehyde structure compound can be rapidly and massively prepared, and particularly, a polyolefine aldehyde structure compound which is more difficult to synthesize in the prior art can be easily prepared and synthesized, and a novel method is provided for synthesis and modification of drug molecules, intermediates and chemical products.

Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π-Acceptor Biphosphoramidite Ligand

Zhao, Jiangui,Zheng, Xueli,Tao, Shaokun,Zhu, Yuxin,Yi, Jiwei,Tang, Songbai,Li, Ruixiang,Chen, Hua,Fu, Haiyan,Yuan, Maolin

supporting information, p. 6067 - 6072 (2021/08/16)

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

Regioselective Silylations of Propargyl and Allyl Pivalates through Ca-Promoted Reductive C(sp3)-O Bond Cleavage

Zhang, Tianyuan,Zheng, Suhua,Kobayashi, Taro,Maekawa, Hirofumi

supporting information, p. 7129 - 7133 (2021/09/18)

A practical protocol for the regioselective preparation of 3-phenylpropargylsilanes and 3-phenylallylsilanes in yields of 36-77 and 48-86%, respectively, from readily accessible 3-phenylpropargyl and 1-phenylallyl pivalates was developed through reductive C(sp3)-O bond cleavage. This method represents the first example of the direct application of vastly abundant calcium granules to a reductive coupling reaction. A broad range of propargylsilanes and allylsilanes are simply prepared using easy-to-handle pivalates and chlorotrimethylsilane under mild catalyst-free and additive-free conditions.

Asymmetric Synthesis of Functionalized 9-Methyldecalins Using a Diphenylprolinol-Silyl-Ether-Mediated Domino Michael/Aldol Reaction

Hayashi, Yujiro,Salazar, Hugo A.,Koshino, Seitaro

supporting information, p. 6654 - 6658 (2021/09/11)

Substituted 9-methyldecalin derivatives containing an all carbon quaternary chiral center were synthesized with excellent enantioselectivity via an organocatalyst-mediated domino reaction. The first reaction is a diphenylprolinol silyl ether-mediated Michael reaction, and the second reaction is an intramolecular aldol reaction. The enantiomerically pure catalyst is involved in both reactions.

Tandem oxidation-dehydrogenation of (hetero)arylated primary alcohols via perruthenate catalysis

Bettencourt, Christian J.,Chow, Sharon,Moore, Peter W.,Read, Christopher D.G.,Jiao, Yanxiao,Bakker, Jan Peter,Zhao, Sheng,Bernhardt, Paul V.,Williams, Craig M.

, p. 652 - 659 (2021/09/08)

Tandem oxidative-dehydrogenation of primary alcohols to give a,b-unsaturated aldehydes in one pot are rare transformations in organic synthesis, with only two methods currently available. Reported herein is a novel method using the bench-stable salt methyltriphenylphosphonium perruthenate (MTP3), and a new co-oxidant NEMO&middoPF6 (NEMO = N-ethyl-N-hydroxymorpholinium) which provides unsaturated aldehydes in low to moderate yields. The Ley-Griffith oxidation of (hetero)arylated primary alcohols with N-oxide co-oxidants NMO (NMO = N-methylmorpholine N-oxide)/NEMO, is expanded by addition of the N-oxide salt NEMO&middoPF6 to convert the intermediate saturated aldehyde into its unsaturated counterpart. The discovery, method development, reaction scope, and associated challenges of this method are highlighted. The conceptual value of late-stage dehydrogenation in natural product synthesis is demonstrated via the synthesis of a polyene scaffold related to auxarconjugatin B.

Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics

Buijs, Ned,Campagna, Roberto,Emanuelli, Monica,Gao, Yongzhi,Innocenti, Paolo,Jespers, Willem,Martin, Nathaniel I.,Parsons, Richard B.,Sartini, Davide,Van Haren, Matthijs J.,Van Westen, Gerard J. P.,Zhang, Yurui,Gutiérrez-De-Terán, Hugo

, p. 12938 - 12963 (2021/09/11)

Nicotinamide N-methyltransferase (NNMT) methylates nicotinamide (vitamin B3) to generate 1-methylnicotinamide (MNA). NNMT overexpression has been linked to a variety of diseases, most prominently human cancers, indicating its potential as a therapeutic target. The development of small-molecule NNMT inhibitors has gained interest in recent years, with the most potent inhibitors sharing structural features based on elements of the nicotinamide substrate and the S-adenosyl-l-methionine (SAM) cofactor. We here report the development of new bisubstrate inhibitors that include electron-deficient aromatic groups to mimic the nicotinamide moiety. In addition, a trans-alkene linker was found to be optimal for connecting the substrate and cofactor mimics in these inhibitors. The most potent NNMT inhibitor identified exhibits an IC50 value of 3.7 nM, placing it among the most active NNMT inhibitors reported to date. Complementary analytical techniques, modeling studies, and cell-based assays provide insights into the binding mode, affinity, and selectivity of these inhibitors.

Enantioenriched Methylene-Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations

Beaud, Rodolphe,Michelet, Bastien,Reviriot, Yasmin,Martin-Mingot, Agnès,Rodriguez, Jean,Bonne, Damien,Thibaudeau, Sébastien

, p. 1279 - 1285 (2019/12/24)

Achieving in a straightforward way the synthesis of enantioenriched elaborated three-dimensional molecules related to bioactive natural products remains a long-standing quest in organic synthesis. Enantioselective organocatalysis potentially offers a uniq

Iron(III)/O2-Mediated Regioselective Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes

Bhowmik, Amit,Fernandes, Rodney A.

supporting information, p. 9203 - 9207 (2019/11/14)

A simple, efficient, and environmentally benevolent regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by iron(III) sulfate/O2 has been developed. The reaction offered good yields and excellent regioselectivity and showed good functional group tolerance (31 examples). The method is important, as few reports with limited substrate scope are available for such excellent oxidative cleavage of conjugated dienes.

Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi

Coelho, Gleicekelly Silva,Andrade, Josimara Souza,Xavier, Viviane Flores,Sales Junior, Policarpo Ademar,Rodrigues de Araujo, Barbara Caroline,Fonseca, Kátia da Silva,Caetano, Melissa Soares,Murta, Silvane Maria Fonseca,Vieira, Paula Melo,Carneiro, Claudia Martins,Taylor, Jason Guy

, p. 337 - 350 (2018/12/05)

Chagas disease is caused by infection with the parasite protozoan Trypanosoma cruzi and affects about 8 million people in 21 countries in Latin America. The main form of treatment of this disease is still based on the use of two drugs, benznidazole and nifurtimox, which both present low cure rates in the chronic phase and often have serious side-effects. Herein, we describe the synthesis of tricyclic coumarins that were obtained via NHC organocatalysis and evaluation of their trypanocidal activity. Molecular docking studies against trypanosomal enzyme triosephosphate isomerase (TIM) were carried out, as well as a theoretical study of the physicochemical parameters. The tricyclic coumarins were tested in vitro against the intracellular forms of Trypanosoma cruzi. Among the 18 compounds tested, 10 were more active than the reference drug benznidazole. The trypanocidal activity of the lead compound was rationalized by molecular docking study which suggested the strong interaction with the enzyme TIM by T.?cruzi and therefore indicating a possible mode of action. Furthermore, the selectivity index of eight tricyclic coumarins with high anti-T.?cruzi activity was above 50 and thus showing that these lead compounds are viable candidates for further in vivo assays.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 56578-36-0