624-24-8Relevant articles and documents
Eco-Friendly Natural Clay: Montmorillonite Modified with Nickel or Ruthenium as an Effective Catalyst in Gamma-Valerolactone Synthesis
?erveny, Libor,Trejbal, Ji?í,Vaňková, Michaela,Vrbková, Eva,Vysko?ilová, Eli?ka
, (2021/07/25)
Ni/Ru metals supported on cheap and available support montmorillonite K10 were used for the selective hydrogenation of levulinic acid to γ-valerolactone. Different loadings of the metals were applied by the impregnation method, and detailed characterization was performed (UV–VIS, XRD, TPR, TPD, particle size distribution, SEM, XRF). Metals’ homogeneous distribution on the surface was confirmed. The selectivity to the desired product was almost independent on the used material. A detailed study of the influence of solvents on the studied reaction was also performed—protic alcohol-based solvents caused the formation of levulinic and valeric acid esters in the reaction mixture. The selectivity was influenced mainly by the alcohol structure (the highest selectivity obtained using isopropyl alcohol and sec-butanol). Mainly the solvent’s donor number (except ethanol) influenced the reaction rate. The prepared catalysts are promising, available, and cheap materials for the studied reaction. Solvent may significantly influence the yield of γ-valerolactone. Graphic Abstract: [Figure not available: see fulltext.].
Method for preparing carboxylic ester compounds by oxidizing and breaking carbon-carbon bonds of secondary alcohol compounds
-
Paragraph 0082-0083; 0092, (2021/06/02)
The invention discloses a method for preparing carboxylic ester compounds by oxidizing and breaking carbon-carbon bonds of secondary alcohol compounds. The method comprises the following steps: adding a secondary alcohol compound, an additive and a nitrogen-doped mesoporous carbon loaded monatomic catalyst into a fatty primary alcohol solvent, putting into a pressure container, sealing, introducing oxygen source gas with a certain pressure, controlling the pressure of the oxygen source gas to be 0.1-1 MPa and the reaction temperature to be 80-150 DEG C, and obtaining a product after the reaction to be the carboxylic ester compound. The nitrogen-doped mesoporous carbon-loaded monatomic catalyst adopted by the invention is high in activity, the highest separation yield of the carboxylic ester compound as a reaction product reaches 99%, the method is wide in application range, the reaction conditions are easy to control, the catalyst can be recycled, the post-treatment is simple, and the method is suitable for industrial production.
ZWITTERIONIC CATALYSTS FOR (TRANS)ESTERIFICATION: APPLICATION IN FLUOROINDOLE-DERIVATIVES AND BIODIESEL SYNTHESIS
-
Paragraph 0010; 0026, (2021/01/29)
An amide/iminium zwitterion catalyst has a catalyst pocket size that promotes transesterification and dehydrative esterification. The amide/iminium zwitterions are easily prepared by reacting aziridines with aminopyridines. The reaction can be applied a wide variety of esterification processes including the large-scale synthesis of biodiesel. The amide/iminium zwitterions allow the avoidance of strongly basic or acidic condition and avoidance of metal contamination in the products. Reactions are carried out at ambient or only modestly elevated temperatures. The amide/iminium zwitterion catalyst is easily recycled and reactions proceed in high to quantitative yields.
Directing Selectivity to Aldehydes, Alcohols, or Esters with Diphobane Ligands in Pd-Catalyzed Alkene Carbonylations
Aitipamula, Srinivasulu,Britovsek, George J. P.,Nobbs, James D.,Tay, Dillon W. P.,Van Meurs, Martin
, p. 1914 - 1925 (2021/06/28)
Phenylene-bridged diphobane ligands with different substituents (CF3, H, OMe, (OMe)2, tBu) have been synthesized and applied as ligands in palladium-catalyzed carbonylation reactions of various alkenes. The performance of these ligands in terms of selectivity in hydroformylation versus alkoxycarbonylation has been studied using 1-hexene, 1-octene, and methyl pentenoates as substrates, and the results have been compared with the ethylene-bridged diphobane ligand (BCOPE). Hydroformylation of 1-octene in the protic solvent 2-ethyl hexanol results in a competition between hydroformylation and alkoxycarbonylation, whereby the phenylene-bridged ligands, in particular, the trifluoromethylphenylene-bridged diphobane L1 with an electron-withdrawing substituent, lead to ester products via alkoxycarbonylation, whereas BCOPE gives predominantly alcohol products (n-nonanol and isomers) via reductive hydroformylation. The preference of BCOPE for reductive hydroformylation is also seen in the hydroformylation of 1-hexene in diglyme as the solvent, producing heptanol as the major product, whereas phenylene-bridged ligands show much lower activities in this case. The phenylene-bridged ligands show excellent performance in the methoxycarbonylation of 1-octene to methyl nonanoate, significantly better than BCOPE, the opposite trend seen in hydroformylation activity with these ligands. Studies on the hydroformylation of functionalized alkenes such as 4-methyl pentenoate with phenylene-bridged ligands versus BCOPE showed that also in this case, BCOPE directs product selectivity toward alcohols, while phenylene-bridge diphobane L2 favors aldehyde formation. In addition to ligand effects, product selectivities are also determined by the nature and the amount of the acid cocatalyst used, which can affect substrate and aldehyde hydrogenation as well as double bond isomerization.
Ruthenium-catalyzed hydrogenation of CO2as a route to methyl esters for use as biofuels or fine chemicals
Li, Yong,Liu, Qingbin,Ma, Yanping,Solan, Gregory A.,Sun, Wen-Hua,Wang, Zheng,Zhang, Qiuyue,Zhao, Ziwei,Zhong, Yanxia
, p. 6766 - 6774 (2020/08/25)
A novel robust diphosphine-ruthenium(ii) complex has been developed that can efficiently catalyze both the hydrogenation of CO2 to methanol and its in situ condensation with carboxylic acids to form methyl esters; a TON of up to 3260 is achievable for the CO2 to methanol step. Both aromatic and aliphatic carboxylic acids can be transformed to their corresponding methyl esters with high conversion and selectivity (17 aliphatic and 18 aromatic examples). On the basis of a series of experiments, a mechanism has been proposed to account for the various steps involved in the catalytic pathway. More importantly, this approach provides a promising route for using CO2 as a C1 source for the production of biofuels, fine chemicals and methanol.
Soluble asphaltene oxide: A homogeneous carbocatalyst that promotes synthetic transformations
Bielawski, Christopher W.,Jung, Hyosic
, p. 15598 - 15603 (2020/05/05)
Carbocatalysts, materials which are predominantly composed of carbon and catalyze the synthesis of organic or inorganic compounds, are promising alternatives to metal-based analogues. Even though current carbocatalysts have been successfully employed in a broad range of synthetic transformations, they suffer from a number of drawbacks in part due to their heterogeneous nature. For example, the insolubility of prototypical carbocatalysts, such as graphene oxide (GO), may restrict access to catalytically-active sites in a manner that limits performance and/or challenges optimization. Herein we describe the preparation and utilization of soluble asphaltene oxide (sAO), which is a novel material that is composed of oxidized polycyclic aromatic hydrocarbons and is soluble in a wide range of organic solvents as well as in aqueous media. sAO promotes an array of synthetically useful transformations, including esterifications, cyclizations, multicomponent reactions, and cationic polymerizations. In many cases, sAO was found to exhibit higher catalytic activities than its heterogeneous analogues and was repeatedly and conveniently recycled, features that were attributed to its ability to form homogeneous phases.
Iron-catalysed 1,2-aryl migration of tertiary azides
Wei, Kaijie,Yang, Tonghao,Chen, Qing,Liang, Siyu,Yu, Wei
supporting information, p. 11685 - 11688 (2020/10/19)
1,2-Aryl migration of α,α-diaryl tertiary azides was achieved by using the catalytic system of FeCl2/N-heterocyclic carbene (NHC) SIPr·HCl. The reaction generated aniline products in good yields after one-pot reduction of the migration-resultant imines.
Method for preparing organic carboxylic ester through combined catalysis of aryl bidentate phosphine ligand
-
Paragraph 0043, (2020/05/29)
The invention discloses a method for preparing organic carboxylic ester by combined catalysis of an aryl bidentate phosphine ligand. The method comprises the following steps: under the action of a palladium compound/aryl bidentate phosphine ligand/acidic additive combined catalyst, carrying out a hydrogen esterification reaction on terminal olefin, carbon monoxide and alcohol so as to generate theorganic carboxylic ester with one more carbon than olefin. According to the invention, by adoption of the palladium compound/aryl bidentate phosphine ligand/acidic additive combined catalyst, good catalytic activity and selectivity for the hydrogen esterification reaction of the olefin are achieved, and olefin carbonylation to synthesize organic carboxylic ester can be efficiently catalyzed. Thearyl bidentate phosphine ligand has a rigid skeleton structure of a rigid ligand and the flexibility of a flexible ligand, so the aryl bidentate phosphine ligand has proper flexibility due to the characteristic that the aryl bidentate phosphine ligand is soft and rigid, and a most favorable coordination mode and a stable active structure in space are favorably formed. In addition, the aryl bidentate phosphine ligand has the advantages of high stability, simple and convenient synthesis method and the like; and a novel industrial technology is provided for production of organic carboxylate compounds.
One-pot direct conversion of levulinic acid into high-yield valeric acid over a highly stable bimetallic Nb-Cu/Zr-doped porous silica catalyst
Karanwal, Neha,Verma, Deepak,Butolia, Paresh,Kim, Seung Min,Kim, Jaehoon
supporting information, p. 766 - 787 (2020/02/25)
The direct conversion of levulinic acid (LA) to valeric biofuel is highly promising for the development of biorefineries. Herein, LA is converted into valeric acid (VA) via one-pot direct cascade conversion over non-noble metal-based Nb-doped Cu on Zr-doped porous silica (Nb-Cu/ZPS). Under mild reaction conditions (150 °C and 3.0 MPa H2 for 4 h), LA was completely converted into VA in high yield (99.8%) in aqueous medium with a high turnover frequency of 0.038 h-1. The Lewis acid sites of ZPS enhanced the adsorption of LA on the catalyst surface, and both the Lewis and Br?nsted acidity associated with Nb2O5 and the metallic Cu0 sites promoted catalysis of the cascade hydrogenation, ring cyclization, ring-opening, and hydrogenation reactions to produce VA from LA. The bimetallic Nb-Cu/ZPS catalyst was also effective for the conversion of VA into various valeric esters in C1-C5 alcohol media. The presence of Nb2O5 effectively suppressed metal leaching and coke formation, which are serious issues in the liquid-phase conversion of highly acidic LA during the reaction. The catalyst could be used for up to five consecutive cycles with marginal loss of activity, even without catalyst re-activation.