95-70-5Relevant articles and documents
Novel environment-friendly production process for preparing amine product and H - acid through silane chemical reduction of several nitro compounds
-
Paragraph 0037-0042, (2021/09/08)
The invention relates to the field of new materials for fine chemicals, and relates to a reduction reaction of a series of nitro compounds, in particular to m-nitroaniline. Several particular important amine compounds such as m-phenylenediamine, 5 - amino o-cresol, 2 - methyl p-phenylenediamine, 1/2 - naphthylamine, H - acid amine and 2, 4, 6 - trimethyl-M-phenylenediamine are prepared from the corresponding mono-or double-nitro compound precursors with a new environmental protection production process technology of and acids derived from the novel process technology. H.
Pd-Pt/modified GO as an efficient and selective heterogeneous catalyst for the reduction of nitroaromatic compounds to amino aromatic compounds by the hydrogen source
Salahshournia, Hossein,Ghiaci, Mehran
, (2019/02/14)
In this work, different nitroaromatic compounds were successfully reduced to their corresponding aromatic amines with excellent conversion and selectivity in methanol at 50?°C by using Pd-Pt nanoparticles immobilized on the modified grapheme oxide (m-GO) and hydrogen as the reducing source. The catalytic efficiency of Pd and Pd-Pt loading on the modified GO was investigated for the reduction of various nitroaromatic compounds, and the Pd-Pt/m-GO system demonstrated the highest conversion and selectivity. The catalyst was characterized by different techniques including FT-IR, Raman, UV–Vis, XRD, BET, XPS, FESEM, EDS, and TEM. The metal nanoparticles with the size of less than 10?nm were uniformly distributed on the m-GO. The catalyst could be reused at least five times without losing activity, showing the stability of the catalyst structure. Finally, the efficiency of the prepared catalyst was compared with Pd-Pt/AC, and Pd-Pt/GO catalysts.
A capping agent dissolution method for the synthesis of metal nanosponges and their catalytic activity towards nitroarene reduction under mild conditions
Ghosh, Sourav,Jagirdar, Balaji R.
, p. 17401 - 17411 (2019/01/03)
We report a general strategy for the synthesis of metal nanosponges (M = Ag, Au, Pt, Pd, and Cu) using a capping agent dissolution method where addition of water to the M@BNHx nanocomposite affords the metal nanosponges. The B-H bond of the BNHx polymer gets hydrolysed upon addition of water and produces hydrogen gas bubbles which act as dynamic templates leading to the formation of nanosponges. The rate of B-H bond hydrolysis has a direct impact on the final nanostructure of the materials. The metal nanosponges were characterized using powder XRD, electron microscopy, XPS, and BET surface area analyzer techniques. The porous structure of these nanosponges offers a large number of accessible surface sites for catalytic reactions. The catalytic activity of these metal nanosponges has been demonstrated for the reduction of 4-nitrophenol where palladium exhibits the highest catalytic activity (k = 0.314 min?1). The catalytic activity of palladium nanosponge was verified for the tandem dehydrogenation of ammonia borane and the hydrogenation of nitroarenes to arylamines in methanol at room temperature. The reduction of various substituted nitroarenes was proven to be functional group tolerant except for a few halogenated nitroarenes (X = Br and I) and >99% conversion was noted within 30-60 min with high turnover frequencies (TOF) at low catalyst loading (0.1 mol%). The catalyst could be easily separated out from the reaction mixture via centrifugation and was recyclable over several cycles, retaining its porous structure.
Gold nanoparticles anchored onto the magnetic poly(ionic-liquid) polymer as robust and recoverable catalyst for reduction of Nitroarenes
Moghaddam, Firouz Matloubi,Ayati, Seyed Ebrahim,Firouzi, Hamid Reza,Hosseini, Seyed Hassan,Pourjavadi, Ali
, (2017/09/30)
Gold nanoparticles supported on poly ionic-liquid magnetic nanoparticles (MNP@PIL@Au) were synthesized by reduction of HAuCl4 with sodium borohydride. The synthesized catalyst was characterized using by AAS, TEM, FT-IR, EDS, TGA and XRD techniques. The performance of the synthesized catalyst was investigated in the reduction of nitroarenes with NaBH4. The reaction was carried out for various nitroarenes in water and mild conditions with high yields. The catalyst selectivity for the reduction of nitro group in the presences of other functional groups such as halides and alkynes was fairly well. The recycling of the catalyst was done 8 times without any significant loss of its catalytic activity.
Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic
Monguchi, Yasunari,Marumoto, Takahisa,Ichikawa, Tomohiro,Miyake, Yutaka,Nagae, Yoshiyuki,Yoshida, Michiyuki,Oumi, Yasunori,Sawama, Yoshinari,Sajiki, Hironao
, p. 2155 - 2160 (2015/11/24)
A heterogeneous palladium catalyst supported on a ceramic (5 % Pd/ceramic) was developed. The catalyst exhibited a specific chemoselectivity for hydrogenation that has never been achieved by other palladium-catalyzed methods. Either aliphatic or aromatic N-Cbz groups could be deprotected to the corresponding free-amines, while the hydrogenolysis of benzyl esters and ethers did not proceed. Furthermore, aryl chlorides and epoxides were tolerant under the Pd/ceramic-catalyzed hydrogenation conditions. 5 % Pd/ceramic could be reused without any loss of catalyst activity, as no palladium leaching was detected in the reaction media.
Structure-Activity and Structure-Property Relationship and Exploratory in Vivo Evaluation of the Nanomolar Keap1-Nrf2 Protein-Protein Interaction Inhibitor
Jiang, Zheng-Yu,Xu, Li-Li,Lu, Meng-Chen,Chen, Zhi-Yun,Yuan, Zhen-Wei,Xu, Xiao-Li,Guo, Xiao-Ke,Zhang, Xiao-Jin,Sun, Hao-Peng,You, Qi-Dong
, p. 6410 - 6421 (2015/09/08)
Directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) is an effective way to activate Nrf2. Using the potent Keap1-Nrf2 PPI inhibitor that was reported by our group, we conducted a preliminary investigation of the structure-activity and structure-property relationships of the ring systems to improve the drug-like properties. Compound 18e, which bore p-acetamido substituents on the side chain phenyl rings, was the best choice for balancing PPI inhibition activity, physicochemical properties, and cellular Nrf2 activity. Cell-based experiments with 18e showed that the Keap1-Nrf2 PPI inhibitor can activate Nrf2 and induce the expression of Nrf2 downstream proteins in an Nrf2-dependent manner. An exploratory in vivo experiment was carried out to further evaluate the anti-inflammatory effects of 18e in a LPS-challenged mouse model. The primary results indicated that 18e could reduce the level of circulating pro-inflammatory cytokines induced by LPS and relieve the inflammatory response. (Chemical Equation Presented).
Systematic evaluation of the palladium-catalyzed hydrogenation under flow conditions
Hattori, Tomohiro,Tsubone, Aya,Sawama, Yoshinari,Monguchi, Yasunari,Sajiki, Hironao
, p. 4790 - 4798 (2014/06/24)
Four types of heterogeneous Pd catalysts (10% Pd/C, 10% Pd/HP20, 0.5% Pd/MS3A, and 0.3% Pd/BN) were applied to the flow hydrogenation to systematically evaluate the appropriate conditions for the reduction of a wide variety of reducible functionalities. The use of 10% Pd/C and 10% Pd/HP20 allowed the hydrogenation of various reducible functionalities by a single-pass of the substrate-MeOH solution through the catalyst cartridge, while 0.5% Pd/MS3A and 0.3% Pd/BN catalyzed a novel chemoselective hydrogenation; only alkene, alkyne, azide, and nitro functionalities could be reduced with other coexisting reducible functionalities intact.
A synthetic and mechanistic investigation into the cobalt(i) catalyzed amination of aryl halides
Brennan, Marshall R.,Kim, Dongyoung,Fout, Alison R.
, p. 4831 - 4839 (2015/02/19)
Employing first-row transition metals in catalytic two-electron transformations remains a synthetic challenge. In order to overcome the common and often deleterious single-electron reactivity, an electron rich ligand was targeted on cobalt. Herein, we report the Co(i) catalyzed amination of aryl halides with lithium hexamethyldisilazide. This transformation features (PPh3)3CoCl (1) as the catalyst and affords structurally diverse and electronically varied primary arylamines in good chemical yields, with the scope of the reaction featuring arylamines that cannot be synthesized via traditional metal-catalyzed amination routes, including 4-aminophenylboronic acid pinacol ester. Stoichiometric reactivity revealed that (PPh3)2CoN(SiMe3)2 (2) is likely generated within the catalytic cycle and could be independently synthesized from the reaction of (PPh3)3CoCl with LiN(SiMe3)2. Catalytic reactivity featuring the Co-amide complex, (PPh3)2CoN(SiMe3)2, showed that it is a competent catalyst, implying that the (PPh3)3CoCl may be serving as a pre-catalyst in the reaction. Both stoichiometric and kinetic studies support the catalytic cycle involving a Co(i) complex. Catalytic reactions featuring Co(ii) complexes resulted in undesired biaryl formation, a product that is not observed under standard catalytic conditions and any productive catalytic reactivity likely arises from an in situ reduction of Co(ii) to Co(i). A Hammett study was carried out to differentiate between a closed-shell or radical mechanism, the results of which are consistent with the proposed closed-shell mechanism. Initial studies indicate that this reactivity may be expanded to other bulky nucleophiles. This journal is
Process for the production of the toluene diisocyanate
-
Page/Page column 5; 6, (2008/06/13)
The invention relates to a process for the production of toluene diisocyanate, in which the crude toluenediamine obtained from the hydrogenation is purified and then phosgenated. The purification step reduces the total amount of cyclic ketones to less than 0.1 % by weight, based on 100% by weight of the toluenediamine.
Clean and efficient hydrogenative cleavage of azo compounds using polymer-supported formate and zinc
Srinivasa,Abiraj,Channe Gowda
, p. 1161 - 1165 (2007/10/03)
Azo compounds, both symmetric and asymmetric, were chemoselectively reduced to the corresponding amine(s) using recyclable polymer-supported formate as a hydrogen donor in the presence of zinc at room temperature. Copyright Taylor & Francis, Inc.