135248-89-4Relevant articles and documents
Peptide Tethering: Pocket-Directed Fragment Screening for Peptidomimetic Inhibitor Discovery
Arora, Paramjit S.,Marrone, Frank,Modell, Ashley E.,Panigrahi, Nihar R.,Zhang, Yingkai
supporting information, p. 1198 - 1204 (2022/02/05)
Constrained peptides have proven to be a rich source of ligands for protein surfaces, but are often limited in their binding potency. Deployment of nonnatural side chains that access unoccupied crevices on the receptor surface offers a potential avenue to
Visible-Light-Mediated S?H Bond Insertion Reactions of Diazoalkanes with Cysteine Residues in Batch and Flow
Chen, Lin,Cui, Yu-Sheng,Duan, Xiu,Guo, Kai,Qin, Long-Zhou,Qiu, Jiang-Kai,Sun, Qi,Yuan, Xin,Zhuang, Kai-Qiang
supporting information, p. 5093 - 5104 (2020/09/23)
We describe the application of S?H bond insertion reactions of aryl diazoacetates with cysteine residues that enabled metal-free, S?H functionalization under visible-light conditions. Moreover, this process could be intensified by a continuous-flow photomicroreactor on the acceleration of the reaction (6.5 min residence time). The batch and flow protocols described were applied to obtain a wide range of functionalized cysteine derivatives and cysteine-containing dipeptides, thus providing a straightforward and general platform for their functionalizations in mild conditions. (Figure presented.).
Disulfide-Based Protecting Groups for the Cysteine Side Chain
Albericio, Fernando,Chakraborty, Amit,De La Torre, Beatriz G.,Sharma, Anamika
supporting information, p. 9644 - 9647 (2020/12/21)
Two new disulfide-based protecting groups (SIT and MOT) are proposed for Cys thiol in the substitution of StBu, which is often difficult to remove. Both groups are based on a secondary thiol with a branched point in the β-position for an efficient modulat
VERSATILE PEPTIDE AND PROTEIN MACROCYCLIZATION AND MULTIMERIZATION WITH DIELS-ALDER CYCLOADDITIONS
-
Paragraph 0141, (2020/10/21)
The present disclosure provides macrocyclic and macrobicyclic peptides with secondary structures that are stabilized over the corresponding non-cyclic peptides. The macrocyclic and macrobicyclic peptides are formed from peptides with adduct-forming, compl
Amino Acids Bearing Aromatic or Heteroaromatic Substituents as a New Class of Ligands for the Lysosomal Sialic Acid Transporter Sialin
Dubois, Lilian,Pietrancosta, Nicolas,Cabaye, Alexandre,Fanget, Isabelle,Debacker, Cécile,Gilormini, Pierre-André,Dansette, Patrick M.,Dairou, Julien,Biot, Christophe,Froissart, Roseline,Goupil-Lamy, Anne,Bertrand, Hugues-Olivier,Acher, Francine C.,Mccort-Tranchepain, Isabelle,Gasnier, Bruno,Anne, Christine
supporting information, p. 8231 - 8249 (2020/09/21)
Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 μM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.
Synthesis, characterization, and dynamic behavior of well-defined dithiomaleimide-functionalized maltodextrins
Hidalgo, Francisco J.,Lorentz, Nathan A. P.,Luu, Tintin B.,Tran, Jonathan D.,Wickremasinghe, Praveen D.,Martini, Olnita,Iovine, Peter M.,Schellinger, Joan G.
supporting information, p. 85 - 89 (2020/02/04)
Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characteriza
Synthesis of isotopically labelled αCGRP8-37 and its lipidated analogue
Lu, Benjamin L.,Loomes, Kerry M.,Hay, Debbie L.,Harris, Paul W.R.,Brimble, Margaret A.
, p. 325 - 332 (2020/03/30)
α-Calcitonin gene related peptide (αCGRP) inhibitors are important medicinal targets due to their ability to produce antimigraine effects, thus, the discovery of long-acting αCGRP inhibitors is of significant interest. Herein we report the synthesis of an isotopically labelled version of the well-known CGRP receptor antagonist, αCGRP8-37, as well as lipidated αCGRP8-37 with comparable antagonistic activity. These isotopically labelled peptides can be employed in assays to determine the metabolic stability of the lipidated αCGRP8-37 and compare this with the stability of known αCGRP8-37.
Novel chiral stationary phases based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin combining cinchona alkaloid moiety
Zhu, Lunan,Zhu, Junchen,Sun, Xiaotong,Wu, Yaling,Wang, Huiying,Cheng, Lingping,Shen, Jiawei,Ke, Yanxiong
, p. 1080 - 1090 (2020/05/25)
Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.
Versatile peptide macrocyclization with diels-alder cycloadditions
Montgomery, Jeffrey E.,Donnelly, Justin A.,Fanning, Sean W.,Speltz, Thomas E.,Shangguan, Xianghang,Coukos, John S.,Greene, Geoffrey L.,Moellering, Raymond E.
supporting information, p. 16374 - 16381 (2019/10/11)
Macrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution. This reaction can be applied alone or in concert with other stabilization chemistries, such as ring-closing olefin metathesis, to stabilize loop, turn, and α-helical secondary structural motifs. NMR and molecular dynamics studies of model loop peptides confirmed preferential formation of endo cycloadduct stereochemistry, imparting significant structural rigidity to the peptide backbone that resulted in augmented protease resistance and increased biological activity of a Diels-Alder cyclized (DAC) RGD peptide. Separately, we demonstrated the stabilization of DAC α-helical peptides derived from the ERα-binding protein SRC2. We solved a 2.25 ? cocrystal structure of one DAC helical peptide bound to ERα, which unequivocally corroborated endo stereochemistry of the resulting Diels-Alder adduct, and confirmed that the unique architecture of stabilizing motifs formed with this chemistry can directly contribute to target binding. These data establish Diels-Alder cyclization as a versatile approach to stabilize diverse protein structural motifs under a range of chemical environments.
PEPTIDE CONJUGATE CGRP RECEPTOR ANTAGONISTS AND METHODS OF PREPARATION AND USES THEREOF
-
Page/Page column 102; 103, (2019/05/22)
Disclosed are peptide conjugates that are calcitonin gene-related peptide (CGRP) receptor antagonists comprising a CGRP peptide, wherein at least one amino acid of the peptide is covalently conjugated to a lipid-containing moiety. Also disclosed are pharm