19009-56-4Relevant articles and documents
Chemo- And regioselective hydroformylation of alkenes with CO2/H2over a bifunctional catalyst
Hua, Kaimin,Liu, Xiaofang,Wei, Baiyin,Shao, Zilong,Deng, Yuchao,Zhong, Liangshu,Wang, Hui,Sun, Yuhan
supporting information, p. 8040 - 8046 (2021/11/01)
As is well known, CO2 is an attractive renewable C1 resource and H2 is a cheap and clean reductant. Combining CO2 and H2 to prepare building blocks for high-value-added products is an attractive yet challenging topic in green chemistry. A general and selective rhodium-catalyzed hydroformylation of alkenes using CO2/H2 as a syngas surrogate is described here. With this protocol, the desired aldehydes can be obtained in up to 97% yield with 93/7 regioselectivity under mild reaction conditions (25 bar and 80 °C). The key to success is the use of a bifunctional Rh/PTA catalyst (PTA: 1,3,5-triaza-7-phosphaadamantane), which facilitates both CO2 hydrogenation and hydroformylation. Notably, monodentate PTA exhibited better activity and regioselectivity than common bidentate ligands, which might be ascribed to its built-in basic site and tris-chelated mode. Mechanistic studies indicate that the transformation proceeds through cascade steps, involving free HCOOH production through CO2 hydrogenation, fast release of CO, and rhodium-catalyzed conventional hydroformylation. Moreover, the unconventional hydroformylation pathway, in which HCOOAc acts as a direct C1 source, has also been proved to be feasible with superior regioselectivity to that of the CO pathway.
Catalyst composition containing bidentate phosphine ligand and application thereof
-
Paragraph 0068; 0077-0080, (2021/11/03)
The catalyst composition comprises a bidentate phosphine ligand and a rhodium complex, wherein the skeleton of the bidentate phosphine ligand not only has C. 2 The symmetry and the appropriate rigidity, and the phosphine ligand derived based on the skeleton can provide effective steric hindrance around the catalyst center metal, so that the selectivity of the catalyst can be remarkably improved, the aldehyde yield is not lower 92% when the catalyst combination is applied to the hydroformylation reaction, and the selectivity of n-aldehyde is not lower 90%. In addition, the raw materials olefins with different structures can obtain outstanding reaction rate and normal aldehyde selectivity as compared with the existing catalyst systems, and can be suitable for the hydroformylation reaction of more types of olefins.
Selective Production of Linear Aldehydes and Alcohols from Alkenes using Formic Acid as Syngas Surrogate
Chen, Junjun,Hua, Kaimin,Liu, Xiaofang,Deng, Yuchao,Wei, Baiyin,Wang, Hui,Sun, Yuhan
, p. 9919 - 9924 (2021/05/31)
Performing carbonylation without the use of carbon monoxide for high-value-added products is an attractive yet challenging topic in sustainable chemistry. Herein, effective methods for producing linear aldehydes or alcohols selectively with formic acid as both carbon monoxide and hydrogen source have been described. Linear-selective hydroformylation of alkenes proceeds smoothly with up to 88 % yield and >30 regioselectivity in the presence of single Rh catalyst. Strikingly, introducing Ru into the system, the dual Rh/Ru catalysts accomplish efficient and regioselective hydroxymethylation in one pot. The present processes utilizing formic acid as syngas surrogate operate simply under mild condition, which opens a sustainable way for production of linear aldehydes and alcohols without the need for gas cylinders and autoclaves. As formic acid can be readily produced via CO2 hydrogenation, the protocols represent indirect approaches for chemical valorization of CO2.
Continuous hydroformylation of 1-decene in an aqueous biphasic system enabled by methylated cyclodextrins
Dreimann, J. M.,Künnemann, K. U.,Lange, D.,Monflier, E.,Schurm, L.,Seidensticker, T.,Tilloy, S.,Vogt, D.
supporting information, p. 3809 - 3819 (2020/07/06)
For the first time, randomly methylated β-cyclodextrin was applied as the mass transfer agent in a continuous process. Considering the example of the Rh-catalyzed hydroformylation of 1-decene, process development was shown, where cyclodextrin was used together with a catalyst system that was continuously recovered and recycled using an aqueous biphasic system. In initial experiments, water-soluble and commercially available Rh/TPPTS and Rh/sulfoxantphos catalyst systems were scaled up from 50 ml into 1000 ml high-pressure autoclave systems to demonstrate their scalability. Both these systems were compared, and they afforded excellent chemoselectivity (>99percent) toward the desired linear aldehyde product. In particular, higher regioselectivity (up to 31) was achieved for the Rh/sulfoxantphos system. Investigations regarding the long-term stability of the mass transfer agent and both catalyst systems were carried out in a continuously operated miniplant process. It was shown that the process could be successfully operated under the steady state for over 200 h with chemoselectivity of >97percent toward the desired aldehyde product. Simultaneously, extremely low Rh leaching (total: 0.59percent) was observed over the entire period of 200 h.
Binuclear Pd(I)-Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes
Zhang, Yang,Torker, Sebastian,Sigrist, Michel,Bregovi?, Nikola,Dydio, Pawe?
supporting information, p. 18251 - 18265 (2020/11/02)
Since its discovery in 1938, hydroformylation has been thoroughly investigated and broadly applied in industry (>107 metric ton yearly). However, the ability to precisely control its regioselectivity with well-established Rh- or Co-catalysts has thus far proven elusive, thereby limiting access to many synthetically valuable aldehydes. Pd-catalysts represent an appealing alternative, yet their use remains sparse due to undesired side-processes. Here, we report a highly selective and exceptionally active catalyst system that is driven by a novel activation strategy and features a unique Pd(I)-Pd(I) mechanism, involving an iodide-assisted binuclear step to release the product. This method enables β-selective hydroformylation of a large range of alkenes and alkynes, including sensitive starting materials. Its utility is demonstrated in the synthesis of antiobesity drug Rimonabant and anti-HIV agent PNU-32945. In a broader context, the new mechanistic understanding enables the development of other carbonylation reactions of high importance to chemical industry.
Kinetics of hydroformylation of 1-decene using carbon-supported ossified HRh(CO)(TPPTS)3 catalyst
Pagar, Nitin S.,Deshpande, Raj M.
, p. 112 - 122 (2018/12/13)
The kinetics of hydroformylation of 1-decene has been investigated using a carbon-supported ossified HRh(CO)(TPPTS)3/Ba catalyst in a temperature range of 343–363?K. The effect of concentration of 1-decene, catalyst loading, partial pressure of H2 and CO, and stirring speed on the reaction rate has been investigated. A first-order dependence was observed for catalyst concentration and hydrogen partial pressure. The rate showed a typical case of substrate inhibition for high 1-decene concentration. The rate varied with a linear dependence on PCO up to a CO partial pressure of 5–6?MPa in contrast to the general trends; for most of the rhodium-phosphine catalyzed hydroformylation reactions, severe inhibition of rate is observed with an increase in CO pressure. A rate equation has been proposed, which was found to be in good agreement with the observed rate data within the limit of experimental errors. The kinetic parameters and activation energy values have been reported.
Homogeneous hydroformylation of long chain alkenes catalyzed by water soluble phosphine rhodium complex in CH3OH and efficient catalyst cycling
Liu, Yan-li,Zhao, Jian-gui,Zhao, Yuan-jiang,Liu, Hui-Min,Fu, Hai-yan,Zheng, Xue-li,Yuan, Mao-lin,Li, Rui-xiang,Chen, Hua
, p. 7382 - 7387 (2019/03/19)
The hydroformylation of long chain alkenes catalyzed by a water soluble Rh/TPPTS complex (TPPTS: sodium salt of sulfonated triphenylphosphine) in methanol was investigated. The mixture of rhodium precursor HRh(CO)(TPPTS)3, ligand TPPTS, methanol and a long chain alkene becomes a single phase under reaction conditions, which make the hydroformylation reaction proceed homogeneously. Both the conversion of long chain alkene and the selectivity to aldehydes (including the aldehydes forming methylacetals) could reach up to 97.8% and 97.6%, respectively, with 3323 h?1 of TOF (TOF: turnover frequency is defined as the moles of converted alkene per mole of Rh per hour). After the solvent methanol was removed under the reaction temperature, two phases were formed automatically. The colourless product phase could be efficiently separated from the precipitate rhodium catalyst phase by centrifuge. The catalyst was reused for five times without obvious loss of rhodium and the catalytic activity. The rhodium leaching in product mixture was less than 0.03% of the total rhodium.
Encapsulated liquid nano-droplets for efficient and selective biphasic hydroformylation of long-chain alkenes
Zhang, Xiaoli,Wei, Juan,Zhang, Xiaoming
supporting information, p. 14134 - 14138 (2019/09/18)
Aqueous nano-droplets of homogeneous Rh-TPPTS catalyst encapsulated within the cavity of hollow silica nanospheres were fabricated for biphasic hydroformylation of long-chain alkenes, which showed significant reaction rate enhancement effects and improved aldehyde selectivity.
Integration of phosphine ligands and ionic liquids both in structure and properties-a new strategy for separation, recovery, and recycling of homogeneous catalyst
Jin, Xin,Feng, Jianying,Song, Hongbing,Yao, Jiajun,Ma, Qingqing,Zhang, Mei,Yu, Cong,Li, Shumei,Yu, Shitao
, p. 3583 - 3596 (2019/07/10)
The major limitation of classic biphasic ionic liquid (IL) catalysis is the heavy use of solvent ILs, which not only violates green chemistry principles but also even worsens catalytic efficiency. So it has always been a challenge finding ways to use ILs more efficiently, economically, and greenly to construct highly effective and long term stable IL catalytic systems. In this work, we synthesized a class of room temperature phosphine-functionalized polyether guanidinium ionic liquids (RTP-PolyGILs) by a convenient ion exchange reaction of polyether guanidinium ionic liquids (PolyGILs) with phosphine-sulfonate ligands based on the concept of the integration of both the phosphine ligand and IL. The resulting RTP-PolyGILs existed as liquids at room temperature and possessed dual functions of both the phosphine ligand and solvent IL; therefore they could both form catalysts by complexing with transition metals and act as catalyst carriers, thus achieving the integration of phosphine ligands with ILs both in structure and properties. Based on the unique properties of these multi-functional integrated RTP-PolyGILs, we constructed a highly effective homogeneous catalysis-biphasic separation (HCBS) system for Rh-catalyzed hydroformylation of higher olefins using only a catalytic amount of RTP-PolyGILs (equivalent to 0.025-0.4 mol% of 1-alkenes). Our HCBS system could be flexibly regulated with regard to catalytic performance (activity and linear selectivity) by changing the structure or type of the sulfonated ligand anion on RTP-PolyGILs. Specifically, it presented a TOF value of 3000-26000 h-1 and a linear selectivity of 68%-98% (corresponding to the l/b ratio of 2.2-37.5) with a total turnover number (TTON) of 11000-45000 and an extremely low Rh leaching of only 0.02-0.4 ppm. Therefore, the HCBS system can effectively combine the advantages of both homogeneous (high activity and good selectivity) and biphasic catalysis (easy catalyst separation). We additionally extended the application of the HCBS system to the hydrogenation of olefins to demonstrate the universality of the RTP-PolyGILs in catalytic reactions.
Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion
Tao, Lin,Zhong, Mingmei,Chen, Jian,Jayakumar, Sanjeevi,Liu, Lina,Li, He,Yang, Qihua
, p. 188 - 196 (2018/01/12)
An efficient heterogeneous catalytic system for hydroformylation of long-chain alkenes is highly desirable for both academy and industry. In this study, an IL-in-oil Pickering emulsion system was employed for heterogeneous hydroformylation of 1-dodecene with Rh-sulfoxantphos as the catalyst and surface modified dendritic mesoporous silica nanospheres (DMSN) as the stabilizer. The IL-in-oil Pickering emulsion system outperformed IL-oil biphase, water-in-oil Pickering emulsion and IL-oil micelle system under similar reaction conditions to afford n/b ratio of 98:2, chemoselectivity of 94% and TOF of 413 h-1, among the highest ever reported for IL-oil biphase hydroformylation of long-chain alkenes. The high efficiency of IL-in-oil Pickering emulsion was primarily attributed to the increased interface area and unique properties of ILs. Studies also revealed that solid stabilizers with large and open pore channels could greatly increase the reaction rate of Pickering emulsion systems by accelerating the diffusion rate. The recyclable IL-in-oil Pickering emulsion is promising not only for hydroformylation of long-chain alkenes but also for catalytic reactions with immiscible liquids.