7359-98-0Relevant articles and documents
Low-Temperature Hypergolic Ignition of 1-Octene with Low Ignition Delay Time
Sheng, Haoqiang,Huang, Xiaobin,Chen, Zhijia,Zhao, Zhengchuang,Liu, Hong
, p. 423 - 434 (2021/02/05)
The attainment of the efficient ignition of traditional liquid hydrocarbons of scramjet combustors at low flight Mach numbers is a challenging task. In this study, a novel chemical strategy to improve the reliable ignition and efficient combustion of hydrocarbon fuels was proposed. A directional hydroboration reaction was used to convert hydrocarbon fuel into highly active alkylborane, thereby leading to changes in the combustion reaction pathway of hydrocarbon fuel. A directional reaction to achieve the hypergolic ignition of 1-octene was designed and developed by using Gaussian simulation. Borane dimethyl sulfide (BDMS), a high-energy additive, was allowed to react spontaneously with 1-octene to achieve the hypergolic ignition of liquid hydrocarbon fuel at -15 °C. Compared with the ignition delay time of pure 1-octene (565 °C), the ignition delay time of 1-octene/BDMS (9:1.2) decreased by 3850% at 50 °C. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry confirmed the directional reaction of the hypergolic ignition reaction pathway of 1-octene and BDMS. Moreover, optical measurements showed the development trend of hydroxyl radicals (OH·) in the lower temperature hypergolic ignition and combustion of 1-octene. Finally, this study indicates that the enhancement of the low-temperature ignition performance of 1-octene by hydroboration in the presence of BDMS is feasible and promising for jet propellant design with tremendous future applications.
Study of the radical chemistry promoted by tributylborane
Liu, Shujuan,Zheng, Zhen,Li, Minrui,Wang, Xinling
, p. 1893 - 1907 (2013/02/23)
The structures of radicals generated in the oxidation process of trialkylborane were detected based on ultra-high performance liquid chromatographyquadrupole-time-of-flight mass spectrometry (UPLC/Q-ToF MS) combined with the spin trapping method. Structur