838-57-3Relevant articles and documents
Annulation-retro-Claisen cascade of bifunctional peroxides for the synthesis of lactone natural products
Hu, Lin,Li, Jialin,Li, Xuemin,Xu, Qianlan
supporting information, p. 274 - 277 (2022/01/03)
A new and highly efficient annulation-retro-Claisen cascade, which involves the [4 + 1] or [5 + 1] annulation of α-benzoylacetates with bielectrophilic peroxides and a subsequent debenzoylation process under mild basic conditions, has been developed for the rapid construction of valuable tetrahydrofuran- and dihydropyran-2-carboxylates in good yields. By employing the new reaction, the unified total synthesis of γ- and δ-lactone natural products such as (±)-tanikolide, (±)-goniothalamins, (±)-7-epi-goniodiol, and (±)-plakolide A has been accomplished in 4-7 steps.
Electrochemical Oxidative Cyclization: Synthesis of Polysubstituted Pyrrole from Enamines
Chen, Zhiwei,Shi, Guang,Tang, Wei,Sun, Jie,Wang, Wenxing
supporting information, p. 951 - 955 (2021/02/03)
A conceptually novel method for the preparation of pyrrole is described by electrochemical-oxidation-induced intermolecular annulation via enamines. In a simple undivided cell, based on a sodium acetate-facilitated, polysubstituted pyrrole derivations has been facilely synthesized under external oxidant-free condition. This electrosynthetic approach providing an environmentally benign protocol for C?C bond cross-coupling and oxidative annulation, which features unparalleled broad scope of substrates and practicality.
Amide/Ester Cross-Coupling via C-N/C-H Bond Cleavage: Synthesis of β-Ketoesters
Chen, Jiajia,Joseph, Devaneyan,Xia, Yuanzhi,Lee, Sunwoo
, p. 5943 - 5953 (2021/04/02)
Activated primary, secondary, and tertiary amides were coupled with enolizable esters in the presence of LiHMDS to obtain good yields of β-ketoesters at room temperature. Notably, this protocol provides an efficient, mild, and high chemoselectivity method
Synthesis of Dithiolethiones and Identification of Potential Neuroprotective Agents via Activation of Nrf2-Driven Antioxidant Enzymes
Bai, Feifei,Fang, Jianguo,Song, Zi-Long,Zhang, Baoxin
, p. 2214 - 2231 (2020/03/06)
Oxidative stress is implicated in the pathogenesis of a wide variety of neurodegenerative disorders, and accordingly, dietary supplement of exogenous antioxidants or/and upregulation of the endogenous antioxidant defense system are promising for therapeutic intervention or chemoprevention of neurodegenerative diseases. Nrf2, a master regulator of the cellular antioxidant machinery, cardinally participates in the transcription of cytoprotective genes against oxidative/electrophilic stresses. Herein, we report the synthesis of 59 structurally diverse dithiolethiones and evaluation of their neuroprotection against 6-hydroxydopamine-or H2O2-induced oxidative damages in PC12 cells, a neuron-like rat pheochromocytoma cell line. Initial screening identified compounds 10 and 11 having low cytotoxicity but conferring remarkable protection on PC12 cells from oxidative-mediated damages. Further studies demonstrated that both compounds upregulated a battery of antioxidant genes as well as corresponding genes' products. Significantly, silence of Nrf2 expression abolishes cytoprotection of 10 and 11, indicating targeting Nrf2 activation is pivotal for their cellular functions. Taken together, the two lead compounds discovered here with potent neuroprotective functions against oxidative stress via Nrf2 activation merit further development as therapeutic or chemopreventive candidates for neurodegenerative disorders.
A Hammett Study of Clostridium acetobutylicum Alcohol Dehydrogenase (CaADH): An Enzyme with Remarkable Substrate Promiscuity and Utility for Organic Synthesis
Berkowitz, David B.,Kudalkar, Gaurav P.,Lee, Joshua D.,Tiwari, Virendra K.
supporting information, p. 237 - 247 (2020/02/18)
Described is a physical organic study of the reduction of three sets of carbonyl compounds by the NADPH-dependent enzyme Clostridium acetobutylicum alcohol dehydrogenase (CaADH). Previous studies in our group have shown this enzyme to display broad substrate promiscuity, yet remarkable stereochemical fidelity, in the reduction of carbonyl compounds, including α-, β- and γ-keto esters (d -stereochemistry), as well as α,α-difluorinated-β-keto phosphonate esters (l -stereochemistry). To better mechanistically characterize this promising dehydrogenase enzyme, we report here the results of a Hammett linear free-energy relationship (LFER) study across three distinct classes of carbonyl substrates; namely aryl aldehydes, aryl β-keto esters and aryl trifluoromethyl ketones. Rates are measured by monitoring the decrease in NADPH fluorescence at 460 nm with time across a range of substrate concentrations for each member of each carbonyl compound class. The resulting v 0 versus [S] data are subjected to least-squares hyperbolic fitting to the Michaelis-Menton equation. Hammett plots of log(V max) versus σ X yield the following Hammett parameters: (i) for p -substituted aldehydes, ρ = 0.99 ± 0.10, ρ = 0.40 ± 0.09; two domains observed, (ii) for p -substituted β-keto esters ρ = 1.02 ± 0.31, and (iii) for p -substituted aryl trifluoromethyl ketones ρ = -0.97 ± 0.12. The positive sign of ρ indicated for the first two compound classes suggests that the hydride transfer from the nicotinamide cofactor is at least partially rate-limiting, whereas the negative sign of ρ for the aryl trifluoromethyl ketone class suggests that dehydration of the ketone hydrate may be rate-limiting for this compound class. Consistent with this notion, examination of the 13 C NMR spectra for the set of p -substituted aryl trifluo romethyl ketones in 2percent aqueous DMSO reveals significant formation of the hydrate (gem -diol) for this compound family, with compounds bearing the more electron-withdrawing groups showing greater degrees of hydration. This work also presents the first examples of the CaADH-mediated reduction of aryl trifluoromethyl ketones, and chiral HPLC analysis indicates that the parent compound α,α,α-trifluoroacetophenone is enzymatically reduced in 99percent ee and 95percent yield, providing the (S)-stereoisomer, suggesting yet another compound class for which this enzyme displays high enantioselectivity.
Cu-Mediated Expeditious Annulation of Alkyl 3-Aminoacrylates with Aryldiazonium Salts: Access to Alkyl N2-Aryl 1,2,3-Triazole-carboxylates for Druglike Molecular Synthesis
Liu, Hao-Nan,Cao, Hao-Qiang,Cheung, Chi Wai,Ma, Jun-An
supporting information, p. 1396 - 1401 (2020/02/22)
Alkyl N-aryl 1,2,3-triazole-carboxylates are important molecules or intermediates in medicinal chemistry, but the synthesis of N2-aryl counterparts remains elusive. Herein, we describe a Cu-mediated annulation reaction of alkyl 3-aminoacrylates with aryldiazonium salts, both of which are readily available substrates. Furthermore, alkyl 2-aminoacrylates are also viable substrates. Diverse alkyl N2-aryl 1,2,3-triazole-carboxylates and their analogues can be rapidly prepared under mild conditions. Especially, this protocol allows one to access several druglike variants of carbonic anhydrase inhibitors and celecoxib.
THIENODIAZEPINE DERIVATIVE OR PHARMACEUTICALLY ACCEPTABLE SALT THEREOF, AND PHARMACEUTICAL COMPOSITION CONTAINING SAME AS ACTIVE INGREDIENT
-
Paragraph 0128-0130, (2018/03/01)
The present invention relates to novel thienodiazepine derivatives or pharmaceutically acceptable salts thereof, and a pharmaceutical composition including the same. The thienodiazepine derivatives or pharmaceutically acceptable salts thereof exhibit selective inhibition activities against protein kinases such as c-Kit, FLT3, FMS, LYN, RAF1, VEGFR3, PDGFRa, PDGFRb, RET, etc., and thus can be used as a pharmaceutical composition for prevention or treatment of abnormal cell growth diseases.
Discovery of novel 4-aryl-thieno[1,4]diazepin-2-one derivatives targeting multiple protein kinases as anticancer agents
Lee, Junghun,Jung, Hoyong,Kim, Minjung,Lee, Eunkyu,Im, Daseul,Aman, Waqar,Hah, Jung-Mi
, p. 1628 - 1637 (2018/02/21)
A series of 4-aryl-thieno[1,4]diazepin-2-one were synthesized and evaluated for their antiproliferative activities against the A375P melanoma and U937 hematopoietic cell lines. Several compounds showed very potent antiproliferative activities toward both cell lines and the activities were better than that of sorafenib, the reference standard. Derivatives were made as amide (8a–8i, 9a–9m) and urea (10a–10d, 11a–11d) with diverse hydrophobic moieties. One of the most potent inhibitor 10d, 1-(4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-(4-(2-oxo-2,3-dihydro-1H-thieno [3,4-b][1,4]diazepin-4-yl)phenyl)urea was found to be very potent inhibitor of multi-protein kinases including FMS kinase (IC50 = 3.73 nM) and is a promising candidate for further development in therapeutics for cancer.
Pyrazole alcohol compound, pharmaceutical composition thereof and application thereof to drugs
-
Paragraph 0128; 0138, (2018/10/19)
The invention discloses a 1-(3,5,6-trimethyl pyrazine-2-yl)-5-pyrazole alcohol compound, a tautomer thereof, a pharmaceutical composition thereof and application thereof to drugs. The 1-(3,5,6-trimethyl pyrazine-2-yl)-5-pyrazole alcohol compound has double effects of resisting platelet aggregation and protecting nerve cells, and comprises a compound as shown in the formula (I), a tautomer (Ia) thereof, or a stereoisomer, a geometrical isomer, a hydrate or a solvate thereof, or a pharmaceutically acceptable salt or prodrug as shown in the description. The 1-(3,5,6-trimethyl pyrazine-2-yl)-5-pyrazole alcohol compound and the pharmaceutical composition thereof provided by the invention can be used for preparing drugs for prevention and/or treatment and/or auxiliary treatment of cerebral apoplexy, cardiovascular and cerebrovascular diseases, senile dementia and complications thereof caused by thrombosis and excessive free radicals.
Bromide-Mediated C-H Bond Functionalization: Intermolecular Annulation of Phenylethanone Derivatives with Alkynes for the Synthesis of 1-Naphthols
Lu, Tao,Jiang, Ya-Ting,Ma, Feng-Ping,Tang, Zi-Jing,Kuang, Liu,Wang, Yu-Xuan,Wang, Bin
supporting information, p. 6344 - 6347 (2017/12/08)
Bromide-mediated intermolecular annulation of phenylethanone derivatives with alkynes has been developed, which allows for the regioselective formation of polysubstituted 1-naphthols. The usage of readily available bromine catalyst, broad substrate scope, and mild conditions make this protocol very practical. Mechanistic investigations reveal that the bromination of phenylethanone derivatives occurs to yield bromo-substituted intermediates, which react in situ with alkynes to furnish the desired 1-naphthols.