M. E. Eggers et al. / Tetrahedron 63 (2007) 12185–12194
12193
Chen, L.-C. J. Chin. Chem. Soc. 2003, 50, 1057–1060; (d)
Wang, H. M.; Lin, M. C.; Chen, L. C. J. Chin. Chem. Soc.
1994, 41, 217–220.
17. (a) Kermack, W. O.; Perkin, W. H., Jr.; Robinson, R. J. Chem.
Soc. 1921, 119, 1602–1642 (Chem. Abstr. 1921, 16, 367); (b)
Szmuszkovicz, J. J. Org. Chem. 1964, 29, 178–184; (c)
Boatman, R. J.; Whitlock, H. W. J. Org. Chem. 1976, 41,
3050–3051; (d) Bergman, J.; Carlsson, R.; Sjoberg, B.
J. Heterocycl. Chem. 1977, 14, 1123–1134.
18. Augelli-Szafran, C. E.; Blankley, C. J.; Roth, B. D.; Trivedi,
B. K.; Bousley, R. F.; Essenburg, A. D.; Hamelehle, K. L.;
Krause, B. R.; Stanfield, R. L. J. Med. Chem. 1993, 36,
2943–2949.
7. Chou, T. S.; Burgtorf, J. R.; Ellis, A. L.; Lammert, S. R.;
Kukolja, S. P. J. Am. Chem. Soc. 1974, 96, 1609–1610.
8. The most well studied example of this process is the Morin ring
expansion8a,b used to convert penam sulfoxides into cepham
antibiotics. Viehe et al.8c has reported a related intermolecular
counterpart that utilizes tert-butyl sulfoxides as latent sulfenyl
cations (via RSOCOCF3) for addition to alkenes. (a) Morin,
R. B.; Jackson, B. G.; Mueller, R. A.; Lavagnino, E. R.;
Scanlon, W. B.; Andrews, S. L. J. Am. Chem. Soc. 1963, 85,
1896–1897; (b) Morin, R. B.; Jackson, B. G.; Mueller, R. A.;
Lavagnino, E. R.; Scanlon, W. B.; Andrews, S. L. J. Am.
Chem. Soc. 1969, 91, 1401–1407; (c) Brichard, M. H.;
Musick, M.; Janousek, Z.; Viehe, H. G. Synth. Commun.
1990, 20, 2379–2386.
9. Some optically active sulfoxides have been shown to racemize
(even at room temperature) via a process of syn-b elimination
to an achiral sulfenic acid followed by recyclization to racemic
sulfoxide: (a) Stoodley, R. J.; Wilkins, R. B. J. Chem. Soc.,
Perkin Trans. 1 1974, 1572–1579; (b) Berges, D. A.; Taggert,
J. J. J. Org. Chem. 1985, 50, 413–415; See also: (c) Lee,
W. S.; Hahn, H. G.; Nam, K. D. J. Org. Chem. 1986, 51,
2789–2795.
10. (a) Hoard, D. W.; Luke, W. D. U.S. Patent 5,569,772, 1996;
Chem. Abstr. 1996, 126, 7983; (b) Hoard, D. W.; Luke, W. D.
U.S. Patent 5,514,826, 1996; Chem. Abstr. 1996, 125, 86485;
(c) Aikins, J. A.; Zhang, T. Y. Patent Application WO 96-
US9167 19960604, 1996; Chem. Abstr. 1996, 126, 117861;
(d) Hoard, D. W.; Luke, W. D.; Johnson, R. A. Book of
Abstracts, 214th ACS National Meeting, Las Vegas, NV,
September 7–11, 1997; ORGN-326; (e) Zhang, T. Y.;
O’Toole, J. C.; Aikins, J.; Sullivan, K. A. Book of Abstracts,
213th ACS National Meeting, San Francisco, CA, April 13–
17, 1997; ORGN-175.
19. Node, M.; Itoh, A.; Nishide, K.; Abe, H.; Kawabata, T.;
Masaki, Y.; Fuji, K. Synthesis 1992, 1119–1124.
20. (a) Terney, A. L., Jr.; Chasar, D. W.; Sax, M. J. Org. Chem.
1967, 32, 2465–2470; (b) Terney, A. L., Jr.; Ens, L.;
Herrmann, J.; Evans, S. J. Org. Chem. 1969, 34, 940–945.
21. (a) Alkyl¼Et, prepared using the general procedure of
Barluenga, J.; Bayon, A. M.; Asensio, G. J. Chem. Soc.,
Chem. Commun. 1984, 1334–1335; (b) See Section 4; (c)
Kuliev, A. M.; Agaeu, A. N.; Mamedov, F. A. Ser. Khim.
Nauk. 1971, 32–36 (Chem. Abstr. 1984, 77, 151594).
22. Gajda, T.; Zwierzak, A. Synthesis 1981, 1005–1008.
23. Both 2-cyanoethyl and tert-butyl sulfoxides are known to
undergo both SES-type reactions and sulfenic acid formation
at much lower temperatures than methyl or ethyl sulfoxides:
Shelton, J. R.; Davis, K. E. Int. J. Sulfur Chem. 1973, 3,
205–216.
24. Jog, P. V.; Brown, R. E.; Bates, D. K. J. Org. Chem. 2003, 68,
8240–8243.
25. (a) Oki, M. Applications of Dynamic NMR Spectroscopy to
Organic Chemistry; VCH: Deerfield Beach, FL, 1985; (b)
Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A. J. Org. Chem.
1995, 60, 4715–4720.
26. Sulfoxide bands in the IR spectra of 2ab and 6ab appear
at lower frequency than those of compounds in the amidic
NH series: Furukawa, N.; Fujihara, H. The Chemistry of
Sulfones and Sulfoxides; Patai, S., Rappoport, Z., Stirling,
C. J. M., Eds.; John Wiley and Sons: New York, NY, 1988;
pp 541–565.
11. Bates, D. K.; Tafel, K. A.; Xu, J. Heterocycl. Commun. 1996, 2,
115–116.
12. Bates, D. K.; Xia, M. J. Org. Chem. 1998, 63, 9190–9196.
13. Bates, D. K.; Tafel, K. A. J. Org. Chem. 1994, 59, 8076–
8080.
27. 1H NMR data suggesting intramolecular N–H/O]S hydro-
gen bonding is as follows. Oxidation of 3a to 4a (and 1a to
2a) results in a chemical shift change ofw0.2 ppm (downfield)
in the indolic N–H signal whereas oxidation of 5a to 6a (and 1a
to 2a) results in a chemical shift change of w2.2 ppm (down-
field) in the amidic N–H signal (in CDCl3 solution).
Comparing 1H NMR spectra recorded in CDCl3 to spectra
recorded in DMSO-d6 for compounds 2a, 9, and 12 indicates
that DMSO causes a small (w0.4 ppm) upfield shift in the ami-
dic N–H signal and a larger (w2.7 ppm) downfield shift in the
indolic N–H. Additionally, the temperature dependence values
for the amidic and indolic N–H signals (DdNH/DT, CDCl3
solution in the range 290–365 K) are ꢂ1.0 and ꢂ5.5 ppb/K,
respectively: (a) Soth, M. J.; Nowick, J. S. J. Org. Chem.
1999, 64, 276–281; (b) Gung, B. W.; Zhu, Z.; Everingham, B.
J. Org. Chem. 1997, 62, 3436–3437; (c) Kessler, H. Angew.
Chem., Int. Ed. Engl. 1982, 21, 512–523.
14. 3,3-Spirocyclic and other 3,3-disubstituted-3H-indolinium
species resulting from indole/electrophile interactions are
a common occurrence throughout indole chemistry: (a)
Jackson, A. H.; Smith, A. E. Tetrahedron 1965, 21, 989–
1000; (b) Jackson, A. H.; Naidoo, B.; Smith, P.
Tetrahedron 1968, 24, 6119–6129; (c) Jackson, A. H.;
Smith, A. E. Tetrahedron 1968, 24, 403–413; (d) Biswas,
K. M.; Jackson, A. H. Tetrahedron 1969, 25, 227–241;
(e) Jackson, A. H.; Naidoo, B. J. Chem. Soc., Perkin
Trans. 2 1973, 548–551; (f) Hallett, D. J.; Gerhard, U.;
Goodacre, S. C.; Hitzel, L.; Sparey, T. J.; Thomas, S.;
Rowly, M.; Ball, R. G. J. Org. Chem. 2000, 65, 4984–
4993; (g) Decker, M.; Faust, R.; Wedig, M.; Nieger, M.;
Holzgrabe, U.; Lehmann, J. Heterocycles 2001, 55, 1455–
1466.
28. Bates, D. K.; Habib, Q. A. J. Heterocycl. Chem. 1995, 32,
1477–1481.
29. Hamel, P.; Girard, M.; Tsou, N. N. J. Heterocycl. Chem. 1999,
36, 643–652.
30. Ambrogi, V.; Furlani, A.; Grandolini, G.; Papaioannou, A.;
Perioli, L.; Scarcia, V.; Tuttobello, L. Eur. J. Med. Chem.
1993, 28, 659–667.
15. Nippon Chemiphar Co. Ltd, Japanese Patent JP 59,27,870,
1971; Chem. Abstr. 1984, 101, 110729f.
16. (a) Alkyl¼Et: Nieforth, K. A. J. Pharm. Sci. 1963, 52, 1136–
1139; (b) Alkyl¼CH2CH2CN: Lankin, D. C.; Petterson,
R. C.; Velazquez, R. A. J. Org. Chem. 1974, 39, 2801–2803;
(c) Alkyl¼tert-Bu: Courtin, A.; von Tobel, H.-R.; Auerbach,
G. Helv. Chim. Acta 1980, 63, 1412–1419.
31. Atkinson, J. G.; Hamel, P.; Girard, Y. Synthesis 1988, 480–481.