O. Bedel et al. / Tetrahedron Letters 43 (2002) 607–609
609
hydrolysis of dipole 2e was the only product isolated.
The use of nitroalkenes which were highly reactive
dipolarophiles with dipole 16 was in turn examined.
Attempted cycloaddition between dipole 2f, prepared
from 6f, and 1-nitrocyclohexene and nitrostyrene gave
rise to degradation products. This poor reactivity con-
trasts sharply with the results observed with oxazoline-
N-oxide 1.
Lett. 1996, 37, 4323–4326; (h) Huisgens, R.; Temme, R.
Eur. J. Org. Chem. 1998, 387–401; (i) For a recent paper
concerning the regioselectivity of [2+3] cycloadditions, see:
Herrera, R.; Nagarajan, A.; Morales, M. A.; Me´ndez, F.;
Jime´nez-Vazquez, H. A.; Zepeda, L. G.; Tamariz, J. J.
Org. Chem. 2001, 66, 1252–1263 and references cited
therein.
4. Roussi, F.; Chauveau, A.; Bonin, M.; Micouin, L.; Hus-
son, H.-P. Synthesis 2000, 1170–1179.
In conclusion, we describe in the present paper the first
evidence for the formation of the unstable oxazoline
azomethine imine dipoles and their stereoselective
cycloadditions with phenyl isocyanate. The poor reac-
tivity of these compounds precluded their use in
cycloadditions with other dipolarophiles. However,
preparation of differently substituted hydrazino deriva-
tives and the possible use of other reactive dipolar-
ophiles such as ketene derivatives open the way to
further studies in this field.
5. Selected data: 1H NMR (200 MHz, l ppm, TMS=0, J:
Hz, CDCl3): compound 5e: 7.4–7.24 (5H, m, ArH); 4.10
(2H, s, CH2); 3.01 (1H, d, J=4, C4-H); 2.08–1.74 (2H, m,
C5-Ha and C6-Ha); 1.65–1.3 (2H, m, C5-Hb and C6-Hb);
1.05 (3H, s, C8-H3); 0.97 (3H, s, C9-H3); 0.84 (3H, s,
C10-H3). Compound 6e (250 MHz, CDCl3): 7.34–7.20 (5H,
m, ArH); 3.57 (1H, d, J=7.4, C2-H); 3.50 (2H, s, CH2);
2.77 (1H, d, J=7.4, C3-H); 1.76 (1H, d, J=4.3, C4-H);
1.70–1.58 (1H, m, C5-Ha); 1.49–1.35 (1H, m, C6-Ha); 1.0
(3H, s, C9-H3); 0.96–0.83 (2H, m, C5-Hb and C6-Hb); 0.91
(3H, s, C8-H3); 0.75 (3H, s, C10-H3). 13C NMR (62.5 MHz,
CD3OD): 171, (CꢀO); 134.9, 130.2, 129.6, 128.3, (CAr);
78.1 (C2); 71.2 (C3); 50.4 (C1); 48.9 (C4); 46.7 (C7); 40.9
(CH2); 32.7, (C6); 27.2 (C5); 21.7, 21.1 (C8 and C9); 11.2
(C10). Compound 7e (200 MHz, CDCl3): 7.65–7.25 (10H,
m, ArH); 6.29 (1H, s, C3a-H); 4.34 (2H, s, CH2); 4.11 (1H,
d, J=7.3, C4a-H); 3.11 (1H, d, J=7.3, C8a-H); 2.54 (1H, d,
J=4.3, C8-H); 1.80–1.22 (2H, C7-Ha and C6-Ha); 1.08 (3H,
s, C11-H3); 1.01 (3H, s, C12-H3); 0.98–0.82 (2H, m, C7-Hb
and C6-Hb); 0.79 (3H, s, C13-H3). 13C NMR (62.5 MHz,
CDCl3): 167.2 (C2); 150.1 (CꢀO); 135.2, 133.7, 129.7,
129.1, 128.4, 126.9, 126.2, 122 (CAr); 100.4 (C3a); 88.2
(C4a); 77.7 (C8a); 48.1 (C5); 46.1 (CH2); 31.3 (C6); 25.1
(C7); 22.1 (C11); 19.3 (C12); 10.8 (C13).
References
1. Berranger, T.; Langlois, Y. J. Org. Chem. 1995, 60, 1720–
1726.
2. Dirat, O.; Kouklovsky, C.; Mauduit, M.; Langlois, Y.
Pure Appl. Chem. 2000, 72, 1721–1737.
3. (a) Oppolzer, W. Tetrahedron Lett. 1970, 11, 2199–2204;
(b) Oppolzer, W. Tetrahedron Lett. 1972, 13, 1707–1710;
(c) Jacobi, P. A.; Martinelli, M. J.; Polanc, S. J. Am.
Chem. Soc. 1984, 106, 5594–5598; (d) Taylor, E. C.;
Davies, H. M. L. J. Org. Chem. 1984, 49, 4415–4419; (e)
Grigg, R.; Dowling, M.; Jordan, W.; Sridharan, V. Tetra-
hedron 1987, 43, 5873–5886; (f) Kanemasa, S.; Tomoshige,
N.; Wada, E.; Tsuge, O. Bull. Chem. Soc. Jpn. 1989, 62,
3944–3949; (g) Khau, V. V.; Martinelli, M. J. Tetrahedron
6. Kouklovsky, C.; Dirat, O.; Berranger, T.; Langlois, Y.;
Tran Huu Dau, M.-E.; Riche, C. J. Org. Chem. 1998, 63,
5123–5128.