1
indicating that little transesterification occurs and MALDI-TOF
also showed the presence of the isopropoxide and hydroxyl end
groups. Interestingly the heterogeneous systems are far more well
controlled (narrow PDIs) than their homogeneous counterparts.
The polymerisation was quenched with the addition of methanol
and the residue was dissolved in CH2Cl2 and filtered. The residue
was analysed via ICP-AES; for the Ti–silsesquioxane there was
1110 ppm of Ti in the residue and for the Ti–heterogeneous
catalysts (entry 4) there was 15 ppm, indicating that leaching is
not significant. These results imply that heterogeneous catalysts
could play an important role in ROP catalysts for the production
of PLA.
In conclusion, we report the preparation and full characterisa-
tion of two novel silsesquioxane complexes; both structures exist
as dimers in the solid state. These catalysts act as models for
heterogeneous systems; both homogeneous and heterogeneous
systems have shown to be active for the ROP of rac-LA under
melt conditions, with the homogeneous systems being more active.
Work is on-going to prepare further heterogeneous systems and
realistic silsesquioxane models for the aluminium system by
modifying the silsesquioxane to allow the incorporation of an
isopropoxide group on the aluminium centre.
CH isopropoxide). 13C{ H} (CDCl3) 22.3 (CH2), 22.6 (CH2), 23.9, 25.7,
25.7, 25.8, 79.5 (CH/CH3). 29Si{ H} (CDCl3) −65.5, −67.9, −68.8 (in a
1
3 : 1 : 3 ratio). Calc. for C31H70O13Si7Ti1 C, 41.59; H, 7.88. Found C, 41.2;
H, 7.75. Crystal data for 3: C62H140O26Si14Ti2, M = 1790.80, 0.25 × 0.25 ×
¯
0.20 mm, triclinic, space group P1, a = 15.7700(2), b = 17.32200(10),
◦
˚
c = 18.9630(2) A, a = 112.8870(10), b = 91.380(1), c = 90.600(1) , V =
4769.78(8) A , Z = 2, Dc = 1.247 g cm−3, F000 = 1920, MoKa radiation,
3
˚
k = 0.71073 A, T = 150(2) K, 2hmax = 55.0◦, 97 404 reflections collected,
˚
21 875 unique (Rint = 0.0457). Final GoF = 1.022, R1 = 0.0512, wR2 =
0.1349, R indices based on 14 926 reflections with I > 2r(I) (refinement
on F2), 1126 parameters, 0 restraints, l = 0.407 mm−1.†
¶ The heterogeneous catalysts were prepared as follows: SiO2 (pore
diameter either 40 or 60 A) was dried at 130 ◦C under vacuum for 5 h.
˚
After this time toluene was added and Ti(OiPr)4 or Al(OiPr)3 (0.8 mmol g−1
silica) and the mixture heated to 70 ◦C and stirred for 4 h. The solid was
filtered and washed with copious amounts of toluene and diethyl ether
and dried under vacuum. Found elemental analysis Ti–SiO2(60) C, 4.39;
H, 1.23. Ti–SiO2(40) C, 4.87; H, 1.36. Al–SiO2(60) C, 4.00; H, 1.37.
1 (a) R. Duchateau, Chem. Rev., 2002, 102, 3525; (b) J. M. Thomas, R.
Raja and D. W. Lewis, Angew. Chem., Int. Ed., 2005, 44, 6456.
2 (a) Z. Y. Zhong, P. J. Dijkstra and J. Feijen, Angew. Chem., Int. Ed.,
2002, 41, 4510; (b) P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P.
White and D. J. Williams, J. Am. Chem. Soc., 2004, 126, 2688; (c) M.
Cheng, A. B. Attygalle, E. B. Lobkovsky and G. W. Coates, J. Am.
Chem. Soc., 1999, 121, 11583; (d) A. J. Chmura, M. G. Davidson, M. D.
Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P. Khunkamchoo,
S. L. Roberts and S. S. F. Wong, Macromolecules, 2006, 39, 7250.
3 B. G. G. Lohmeijer, R. C. Pratt, F. Leibfarth, J. W. Logan, D. A. Long,
A. P. Dove, F. Nederberg, J. Choi, C. Wade, R. M. Waymouth and J. L.
Hedrick, Macromolecules, 2006, 39, 8574.
4 (a) T. M. AbdelFattah and T. J. Pinnavaia, Chem. Commun., 1996, 665;
(b) G. Deshayes, K. Poelmans, I. Verbruggen, C. Camacho-Camacho,
P. Degee, V. Pinoie, J. C. Martins, M. Piotto, M. Biesemans, R. Willem
and P. Dubois, Chem.–Eur. J., 2005, 11, 4552.
5 F. J. Feher, D. A. Newman and J. F. Walzer, J. Am. Chem. Soc., 1989,
111, 1741.
Acknowledgements
The EPSRC is acknowledged for an RCUK fellowship to MDJ, a
case studentship to CGK, and the University of Bath for AJW. Dr
1
John Lowe is gratefully acknowledged for recording 29Si{ H}
NMR spectra. The EPSRC national solid-state NMR and mass
spectrometry service centres are gratefully acknowledged. We
thank Johnson Matthey for the ICP-AES measurements.
6 F. J. Feher, S. L. Gonzales and J. W. Ziller, Inorg. Chem., 1988, 27, 3440.
7 M. Crocker, R. H. M. Herold and A. G. Orpen, Chem. Commun., 1997,
2411.
8 T. Maschmeyer, M. C. Klunduk, C. M. Martin, D. S. Shephard, J. M.
Thomas and B. F. G. Johnson, Chem. Commun., 1997, 1847.
9 (a) F. J. Feher and K. J. Weller, Organometallics, 1990, 9, 2638; (b) F. J.
Feher and R. L. Blanski, J. Am. Chem. Soc., 1992, 114, 5886; (c) F. J.
Feher, T. A. Budzichowski and J. W. Ziller, Inorg. Chem., 1992, 31,
5100.
10 (a) R. Duchateau, W. J. van Meerendonkt, S. Huijser, B. B. P. Staal,
M. A. van Schilt, G. Gerritsen, A. Meetsma, C. E. Koning, M. F.
Kemmere and J. T. F. Keurentjes, Organometallics, 2007, 26, 4204;
(b) J. R. Severn, R. Duchateau, R. A. van Santen, D. D. Ellis, A. L.
Spek and G. P. A. Yap, Dalton Trans., 2003, 2293; (c) G. Gerritsen,
R. Duchateau, R. A. van Santen and G. P. A. Yap, Organometallics,
2003, 22, 100; (d) R. Duchateau, T. W. Dijkstra, J. R. Severn, R. A. van
Santen and I. V. Korobkov, Dalton Trans., 2004, 2677.
11 (a) M. Nowotny, T. Maschmeyer, B. F. G. Johnson, P. Lahuerta, J. M.
Thomas and J. E. Davies, Angew. Chem., Int. Ed., 2001, 40, 955; (b) P. P.
Pescarmona, A. F. Masters, J. C. van der Waal and T. Maschmeyer,
J. Mol. Catal. A: Chem., 2004, 220, 37.
12 F. J. Feher, T. A. Budzichowski and K. J. Weller, J. Am. Chem. Soc.,
1989, 111, 7288.
13 M. Crocker, R. H. M. Herold, A. G. Orpen and M. T. A. Overgaag,
J. Chem. Soc., Dalton Trans., 1999, 3791.
14 (a) L. Zhang, H. C. L Abbenhuis, G. Gerritsen, N. Ni, Bhriain,
P. C. M. M. Magusin, B. Mezari, W. Han, R. A. van Santen, Q. H.
Yang and C. Li, Chem.–Eur. J., 2007, 13, 1210; (b) H. Al Ghatta,
H. C. L. Abbenhuis, World Pat., 2 008 009 708, publication date 24th
January 2008.
15 (a) J. M. Fraile, J. I. Garcia, J. A. Mayoral, L. C. Demenorval and F.
Rachdi, J. Chem. Soc., Chem. Commun., 1995, 539; (b) P. Iengo, G.
Aprile, M. Di, Serio, D. Gazzoli and E. Santacesaria, Appl. Catal.,
A, 1999, 178, 97; (c) M. C. Capel-Sanchez, J. M. Campos-Martin and
J. L. G. Fierro, J. Catal., 2005, 234, 488.
Notes and references
‡ Synthesis and characterisation of complex 2: Isobutyl silsesquioxane
(1) (1.76 g, 2.22 mmol) was dissolved in THF (15 ml), to which 2.0 M
trimethylaluminium solution in hexane (1.11 ml, 2.22 mmol) was added.
The reaction was stirred under argon for 1 h, the solvent removed under
reduced pressure, the product dissolved in 10 ml of hot hexane, and left
to recrystallise at room temperature. After 2 days crystals suitable for a
diffraction had formed. 1H NMR (CDCl3) 0.54 (12H, d J = 7.0 Hz, SiCH2),
0.60 (12H, d J = 7.0 Hz, SiCH2), 0.75 (4H, d J = 7.0 Hz, SiCH2), 0.96
(84H, m, CH3), 1.84 (12H, sept J = 7.0 Hz, CH), 2.01 (2H, sept J = 7.0 Hz,
1
CH).13C{ H} NMR (CDCl3) 22.4, 22.5, 22.9, 23.2 (CH2), 23.2 (CH), 23.4
(CH2), 23.9, 24.0, 24.1 (CH), 25.6, 25.6, 25.7, 25.7, 25.9, 25.9, 26.0 (CH3).
1
29Si{ H} (CDCl3) −63.0, −64.0, −66.5, −67.0, −70.5 in a 1 : 2 : 2 : 1 : 1
ratio. Elemental analysis: calc. for C56H126Al2O24Si14: C, 41.24; H, 7.79.
Found C, 40.7; H, 7.78. Crystal data for 2: C28H63AlO12Si7, M = 815.39,
¯
colourless block, 0.15 × 0.10 × 0.10 mm, triclinic, space group P1, a =
˚
11.8430(5), b =◦14.2230(6), c = 15.3430(7) A, a = 112.420(2), b = 90.025(2),
c = 112.209(2) , V = 2180.03(16) A , Z = 1, Dc = 1.242 g cm−3, F000
=
3
˚
˚
876, Mo Ka radiation, k = 0.71073 A, T = 150(2) K, 2hmax = 50.2◦, 19 937
reflections collected, 7624 unique (Rint = 0.0429). Final GoF = 1.058, R1 =
0.0534, wR2 = 0.1349, R indices based on 5938 reflections with I > 2r(I)
(refinement on F2), 606 parameters, 0 restraints, l = 0.289 mm−1.†
§ Synthesis and characterisation of complex 3: 1 (1.82 g, 2.3 mmol) was
dissolved in CH2Cl2 to which Ti(OiPr)4 (0.68 ml, 2.3 mmol) was added; this
was stirred for 2 h. After this time the solvent was removed in vacuo and
the white product was recrystallised in hexane. After 2 days at −20 ◦C a
crop of colourless crystals were obtained which were filtered and dried. 1H
(CDCl3) 0.50 (14H, m, SiCH2), 0.98 (42H, m, CH3 silses), 1.30 (6H, d J =
6 Hz, CH3 isopropoxide), 1.85 (7H, m, CH silses), 4.56 (1H, sept J = 6 Hz,
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 3655–3657 | 3657
©