2524
R. Akkari et al. / Tetrahedron: Asymmetry 15 (2004) 2515–2525
38, 8777–8780; Phoon, C. W.; Abell, C. Tetrahedron Lett.
1998, 39, 2655–2658; Winkler, J. D.; McCoull, W.
Tetrahedron Lett. 1998, 39, 4935–4936; Faita, G.; Paio,
A.; Quadrelli, P.; Rancati, F.; Seneci, P. Tetrahedron Lett.
2000, 41, 1265–1269; Gordon, K.; Bolger, M.; Khan, N.;
Balasubramanian, S. Tetrahedron Lett. 2000, 41, 8621–
8625; Miyabe, H.; Konishi, C.; Naito, T. Org. Lett. 2000,
2(10), 1443–1445; Faita, G.; Paio, A.; Quadrelli, P.;
Rancatiand, F.; Seneci, P. Tetrahedron 2001, 57, 8313–
8322; Nakamura, S.; Uchiyama, Y.; Ishikawa, S.; Fukin-
bara, R.; Watanabe, Y.; Toru, T. Tetrahedron Lett. 2002,
43, 2381–2383.
yield, 86/14 endo/exo); tR (HPLC column A) 10.8 min
(endo) and 11.4 min (exo); tR (HPLC column D eluent
II) (exo)-10c: 67.6 and 73.7 min, (endo)-(2S)-10b:
117.5 min and (endo)-(2R)-10b: 121.1 min;26 NMR data
are identical to those of the (2S)-enantiomer.
References and notes
1. Fringuelli, F.; Tatichi, A. The Diels–Alder Reaction:
Selected Practical Methods; John Wiley & Sons, 2002.
2. Carruthers, W. In Cycloaddition Reaction in Organic
Synthesis. Tetrahedron Organic Chemistry Series;
Pergamon: Oxford, 1990.
3. Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassiliko-
giannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1669–
1698.
4. Oh, T.; Reilly, M. Org. Prep. Proc. Int. 1994, 26, 129–
158.
5. Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 876–
889.
10. As examples see: Yedidia, V.; Leznoff, C. C. Can. J. Chem.
1980, 58, 1144–1150; Crawshaw, M.; Hird, N. W.
Tetrahedron Lett. 1997, 40, 7115–7118; Winkler, J. D.;
Kwak, Y.-S. J. Org. Chem. 1998, 63, 8634–8635; Heer-
ding, D. A.; Takata, D. T.; Kwon, C.; Huffman, W. F.;
Samanen, J. Tetrahedron Lett. 1997, 39, 6815–6818;
Paulvannan, K. Tetrahedron Lett. 1999, 40, 1851–1854;
Burkett, B. A.; Chai, C. L. L. Tetrahedron Lett. 1999, 40,
7035–7038; Morphy, J. R.; Rankovic, Z.; York, M.
Tetrahedron Lett. 2002, 43, 5973–5975.
11. Yli-Kauhaluoma, J. Tetrahedron 2001, 57, 7053–7071.
12. Corbridge, M. D.; Mc Arthur, C. R.; Leznoff, C. C. React.
Polym. 1988, 8, 173–188; Winkler, J. D.; Mc Coull, W.
Tetrahedron Lett. 1998, 39, 4935–4936; Sun, S.; Murray,
W. V. J. Org. Chem. 1999, 64, 5941–5945.
6. Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions
in Organic Synthesis; John Wiley & Sons, 2002, pp 1–55;
Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650–1667;
Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007–1019.
7. As examples see: (a) Poll, T.; Sobczak, A.; Hartmann, H.;
Helmchen, G. Tetrahedron Lett. 1985, 26, 3095–3098; (b)
Poll, T.; Abdel, A. F.; Karge, R.; Linz, G.; Weetman, J.;
Helmchen, G. Tetrahedron Lett. 1989, 30, 5595–5598; (c)
Miyaji, K.; Ohara, Y.; Takahashi, Y.; Tsuruda, T.; Arai,
K. Tetrahedron Lett. 1991, 32, 4557–4560; (d) Fraile, J.
M.; Garcia, J. I.; Garcia, D.; Mayoral, J. A.; Pires, E. J.
Org. Chem. 1996, 61, 9479–9482; (e) Burke, M. J.; Allan,
M. M.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry
2000, 11, 2733–2739; (f) Palomo, C.; Oiarbide, M.; Garcia,
J. M.; Gonzalez, A.; Lecumberri, A.; Linden, A. J. Am.
Chem. Soc. 2002, 124, 10288–10289; (g) Kawamura, M.;
Kudo, K. Chirality 2002, 14, 727–730; (h) Lait, S. M.;
Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry 2003,
14, 749–756.
8. For recent examples of synthetic solid-supported chiral
reagent or catalyst see: Altava, B.; Burguete, M. I.;
Garcia-Verdugo, E.; Luis, S. V.; Pozo, O.; Salvator, R. V.
Eur. J. Org. Chem. 1999, 2263–2267; Zhengpu, Z.;
Yongmer, W.; Zhen, W.; Hodge, P. React. Polym. 1999,
41, 37–43; Dong, C.; Zhang, J. L.; Zheng, W. H.; Zhang,
L. F.; Yu, Z. L.; Choi, M. C. K.; Chan, A. S. C.
Tetrahedron: Asymmetry 2000, 11, 2449–2454; Yang, X.
W.; Sheng, J. H.; Da, C. S.; Wang, H. S.; Su, W.; Wang,
R.; Chan, A. S. C. J. Org. Chem. 2000, 65, 295–296;
Mandoli, A.; Pini, D.; Agostini, A.; Salvadori, P. Tetra-
hedron: Asymmetry 2000, 11, 4039–4042; Chinchilla, R.;
Mazon, P.; Najera, C. Tetrahedron: Asymmetry 2000, 11,
3277–3281; Altava, B.; Burguete, M. I.; Collado, M.;
Garcia-Verdugo, E.; Luis, S. V.; Salvador, R. V.; Vincent,
M. J. Tetrahedron Lett. 2001, 42, 1673–1675; Hallman, K.;
Moberg, C. Tetrahedron: Asymmetry 2001, 12, 1475–1478;
Thierry, B.; Plaquevent, J.-C.; Cahard, D. Tetrahedron:
Asymmetry 2001, 12, 983–986.
ꢀ
13. Akkari, R.; Calmes, M.; Martinez, J. Eur. J. Org. Chem.
2004, 2441–2450.
14. (a) Akkari, R.; Calmes, M.; Mai, N.; Rolland, M.;
ꢀ
Martinez, J. J. Org. Chem. 2001, 66, 5859–5965; (b)
ꢀ
Akkari, R.; Calmes, M.; Di Malta, D.; Escale, F.;
Martinez, J. Tetrahedron: Asymmetry 2003, 14, 1223–
1228.
15. Marieva, T. D.; Kopelevich, V. M.; Torosyan, Zh. K.;
Gunar, V. J. Gen. Chem. URSS (Engl. Transl.) 1979, 49,
191–194.
16. The diffraction data were collected on a Enraf–Nonius
using graphite-monochromate Mo-Ka radiation and the
/-scan technique up to h ¼ 24:94. Crystal data for ester
(1S,30S)-4: Molecular formula C30H33NO7, molecular
weight ¼ 519, orthorhombic, space group P21212, cell
ꢂ
ꢂ
constants: a ¼ 39:2790ð1Þ A, b ¼ 6:8420ð1Þ A, c ¼
3
ꢂ
ꢂ
11:2790ð1Þ A, V ¼ 3031:20ð5Þ A , Z ¼ 4, Dc ¼ 1:14 mg/
m3, T ¼ 298 K, final R ¼ 0:061, final Rw ¼ 0:188. Details
of the crystal structure determination have been deposited
at the Cambridge Crystallographic Data Centre (deposi-
tion number CCDC 234392). The configuration of the
newly generated stereogenic centre of (1S,30S)-4 was
established from the (1S)-absolute configuration of the
camphanic acid part.
17. With cyclohexadiene it was necessary to use 10 equiv of
diene and 1.2 equiv of TiCl4 to obtain a quantitative
reaction after 16 h at 0 ꢁC.
18. Absolute stereochemistry of 9a, 9c and 9d was assigned by
comparing the sign of the specific rotation to that reported
in the literature: Poll, T.; Sobczak, A. F. A.; Karge, R.;
Linz, G.; Weetman, J.; Helmchen, G. Tetrahedron Lett.
1985, 26, 3095–3098.
19. The regioselectivity was assigned by comparison of the 13
C
NMR spectrum to that of the para and meta mixtures
obtained according to the procedure described by:
Kuehne, M. E.; Horne, D. A. J. Org. Chem. 1975, 40,
1287–1292.
9. For recent applications of synthetic solid-supported aux-
iliary see: Moon, H.-S.; Schore, N. E.; Kurth, M. J. J. Org.
Chem. 1992, 57, 6088–6089; Moon, H.-S.; Schore, N. E.;
Kurth, M. J. Tetrahedron Lett. 1994, 35, 8915–8918;
20. The endo selectivity was assigned by comparison of the 13
C
ꢀ
Calmes, M.; Daunis, J.; Hanouneh, A.; Jacquier, R.
NMR spectra to that of the commercially available 70/30
endo/exo mixture for 9c and to that of the endo/exo
mixture prepared as described in the experimental part for
9d.
Tetrahedron: Asymmetry 1994, 5, 817–820; Shuttleworth,
S. J.; Allin, S. M. Tetrahedron Lett. 1996, 37, 8023–8026;
Purandare, A. V.; Natarajan, S. Tetrahedron Lett. 1997,