LETTER
2,3-Disubstituted Quinolines by a Three-Component Coupling Reaction
2641
3960. (d) Wu, J.; Xia, H.; Gao, K. Org. Biomol. Chem. 2006,
4, 126. (e) Tanaka, S.; Yasuda, M.; Baba, A. J. Org. Chem.
2006, 71, 800. (f) Wu, Y.; Liu, L.; Li, H.; Wang, D.; Chen,
Y. J. Org. Chem. 2006, 71, 6592. (g) Korivi, R. P.; Cheng,
C. J. Org. Chem. 2006, 71, 7079. (h) Sakai, N.; Annaka, K.;
Konakahara, T. J. Org. Chem. 2006, 71, 3653. (i) Asao, N.;
Iso, K.; Yudha, S. S. Org. Lett. 2006, 8, 4149. (j) Sromek,
A. W.; Rheingold, A. L.; Wink, D. J.; Gevorgyan, V. Synlett
2006, 2325. (k) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi,
E.; Verdecchia, M. Synlett 2006, 3218. (l) Muscia, G. C.;
Bollini, M.; Carnevale, J. P.; Bruno, A. M.; Asis, S. E.
Tetrahedron Lett. 2006, 47, 8811. (m) Cho, C. S.; Ren, W.
X.; Shim, S. C. Tetrahedron Lett. 2006, 47, 6781. (n) Lin,
X.-F.; Cui, S.-L.; Wang, Y.-G. Tetrahedron Lett. 2006, 47,
3127. (o) Wang, G.-W.; Jia, C.-S.; Dong, Y.-W.
Ethyl 3-ethoxyacrylate (6), which could result from the
1,4-addition of ethanol to ethyl propiolate, might be in-
volved in the reaction.12 It would react with the imine to
produce quinoline.4a,13 So, we separately performed the
reaction of ethyl 3-ethoxyacrylate (6) with imine 5 [or
p-toluidine (1a) and benzaldehyde (2a)]. However, this
reaction hardly gave the quinoline under the same condi-
tions, and the starting imine 5 was recovered
(Scheme 3).14
The reaction might proceed with the Diels–Alder-type
cycloaddition of the imine with ethyl propiolate (3),
although the regioselectivity of the product can not be
explained.
Tetrahedron Lett. 2006, 47, 1059. (p) Li, A.; Ahmed, E.;
Chen, X.; Cox, M.; Crew, A. P.; Dong, H.; Jin, M.; Ma, L.;
Panicker, B.; Siu, K. W.; Steinig, A. G.; Stolz, K. M.;
Tavares, P. A. R.; Volk, B.; Weng, Q.; Werner, D.;
Mulvihill, M. J. Org. Biomol. Chem. 2007, 5, 61.
N
Ph
EtO
CO2Et
Me
5
6
(q) Arcadi, A.; Bianchi, G.; Inesi, A.; Marinelli, F.; Rossi, L.
Synlett 2007, 103.
Sc(OTf)3
N
Ph
(10 mol%)
(5) There are a few reports for the synthesis of 2-aryl-3-
carboalkoxy quinoline using Friedländer reaction. For
examples, see: (a) Patteux, C.; Levacher, V.; Dupas, G. Org.
Lett. 2003, 5, 3061. (b) Leleu, S.; Papamicaël, C.; Marsais,
F.; Dupas, G.; Levacher, V. Tetrahedron: Asymmetry 2004,
15, 3919.
×
EtOH
Me
CO2Et
reflux, 24 h
4aa
Scheme 3
(6) When this reaction was carried out at reflux in toluene, the
major product was the 1,4-dihydropyridines. The investiga-
tion regarding the synthesis of 1,4-dihydropyridines will be
reported elsewhere in due course.
In conclusion, we have developed a useful method for the
synthesis of the 2,3-disubstituted quinolines bearing an
ester group at the 3-position by the three-component cou-
pling reaction of an amine, aldehyde, and ethyl propiolate
using a catalytic amount of Sc(OTf)3. Further studies on
the reaction mechanism are now in progress.
(7) We performed this reaction using TfOH (10 mol%) at reflux
in EtOH, and obtained the quinoline 4aa in 50% yield..
(8) General Procedure: To the EtOH (5 mL) solution of 1a
(53.9 mg, 0.5 mmol), 2a (55 mL, 0.54 mmol) and Lewis acid
(0.05 mmol, 10 mol%) was added 3 (61 mL, 0.6 mmol) using
a microsyringe and then the mixture was refluxed for 24 h.
The reaction was quenched with sat. aq NaHCO3 and the
mixture was extracted with EtOAc. The combined organic
layers were dried over MgSO4. The organic layer was
filtered and concentrated under reduced pressure. The yield
of 4aa was determined by GC using biphenyl as the internal
standard. The quinoline 4aa was purified by preparative
TLC (SiO2; hexane–EtOAc, 7:1) and/or recycling
Acknowledgment
This work was financially supported by a Chuo University Joint
Research Grant.
References and Notes
(1) Balalaie, S.; Kowsari, E. Monatsh. Chem. 2001, 132, 1551.
(2) (a) Balasubramanian, M.; Keay, J. G. In Comprehensive
Heterocyclic Chemistry II, Vol. 5; Katritzky, A. R.; Rees, C.
W.; Scriven, E. F. V., Eds.; Pergamon Press: Oxford / New
York, 1996, 245. (b) Michael, J. P. Nat. Prod. Rep. 1997, 14,
605.
(3) (a) Aggarwal, A. K.; Jenekhe, S. A. Macromolecules 1991,
24, 6806. (b) Zhang, X.; Shetty, A. S.; Jenekhe, S. A.
Macromolecules 1999, 32, 7422. (c) Jenekhe, S. A.; Lu, L.;
Alam, M. M. Macromolecules 2001, 34, 7315. (d) Aoki, S.;
Sakurama, K.; Matsuo, N.; Yamada, Y.; Takasawa, R.;
Tanuma, S.; Shiro, M.; Takeda, K.; Kimura, E. Chem. Eur.
J. 2006, 12, 9066. (e) Qu, S.; Lin, Z.; Duan, C.; Zhang, H.;
Bai, Z. Chem. Commun. 2006, 4392. (f) Shavaleev, N. M.;
Adams, H.; Best, J.; Edge, R.; Navaratnam, S.; Weinstein, J.
A. Inorg. Chem. 2006, 45, 9410.
preparative HPLC (GPC column, CHCl3 as an eluent) and
was fully characterized.
Ethyl 6-Methyl-2-phenylquinoline-3-carboxylate (4aa):
1H NMR (300 MHz, CDCl3): d = 1.06 (t, J = 6.9 Hz, 3 H),
2.55 (s, 3 H), 4.17 (q, J = 6.9 Hz, 2 H), 7.44 (m, 3 H), 7.62
(m, 4 H), 8.07 (d, J = 9.0 Hz, 1 H), 8.55 (s, 1 H). 13C NMR
(CDCl3): d = 13.6, 21.5, 61.4, 125.4, 125.8, 126.8, 128.1,
128.3, 128.4, 129.1, 133.8, 137.2, 138.3, 140.8, 146.9,
157.2, 168.1.
(9) The reaction with imine 5, which was prepared from 1a and
2a, using Sc(OTf)3 yielded the quinoline 4aa in 60% yield.
(10) CCDC 650434 contains the supplementary crystallographic
data for compound 4ha. These data can be obtained free of
emailing data_request@ccdc.cam.ac.uk, or by contacting
The Cambridge Crystallographic Data Centre, 12, Union
Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033.
(11) Typical Procedure (Scheme 2): To the EtOH (7 mL)
solution of 1a (107.2 mg, 1.0 mmol), 2d (110 mL, 1.1 mmol),
which was distilled from P2O5 before use, and Sc(OTf)3
(49.2 mg, 0.10 mmol) was added 3 (122 mL, 1.2 mmol) using
a microsyringe and then the mixture was refluxed for 24 h.
(4) For recent reports on the synthesis of quinoline derivatives,
see: (a) Duvelleroy, D.; Perrio, C.; Parisel, O.; Lasne, M.-C.
Org. Biomol. Chem. 2005, 3, 3794. (b) Kouznetsov, V. V.;
Méndez, L. Y. V.; Gómez, C. M. M. Curr. Org. Chem. 2005,
9, 141. (c) Familoni, O. B.; Klaas, P. J.; Lobb, K. A.;
Pakade, V. E.; Kaye, P. T. Org. Biomol. Chem. 2006, 4,
Synlett 2007, No. 17, 2639–2642 © Thieme Stuttgart · New York