Journal of the American Chemical Society
Page 4 of 5
1979, 101, 5961; (c) Fox, M. A.; Younathan, J.; Fryxell, G. E. J. Org.
cess is utilized in the hydrodefluorination reaction to access
partially fluorinated arenes. Our work points to the further
development of the design paradigm for photoredox catalysis
where the size32 and shape of photocatalyst can be fine-tuned
to enhance the overall catalytic activity. This work also con-
stitutes a new example of the utility of weak, non-covalent
interaction in small molecule catalysis.33
Chem. 1983, 48, 3109; (d) Sankararaman, S.; Haney, W. A.; Kochi, J. K.
J. Am. Chem. Soc. 1987, 109, 7824; (e) da Silva, G. P.; Ali, A.; da Silva,
R. C.; Jiang, H.; Paixao, M. W. Chem. Commun. 2015, 51, 15110; (f)
Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A.; Leonori, D. Angew.
Chem. Int. Ed. 2015, 54, 14017; (g) Lima, C. G. S.; de M. Lima, T.;
Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 1389.
1
2
3
4
5
(12)
(a) Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.;
6
7
8
9
Melchiorre, P. Nat. Chem. 2013, 5, 750; (b) Silvi, M.; Arceo, E.;
Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137,
6120.
ASSOCIATED CONTENT
Supporting Information
(13)
(a) Dichiarante, V.; Fagnoni, M.; Albini, A. Green Chem.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2009, 11, 942; (b) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem.
Int. Ed. 2013, 52, 3328; (c) Senaweera, S. M.; Singh, A.; Weaver, J. D. J.
Am. Chem. Soc. 2014, 136, 3002.
Materials, general procedures, synthesis, physical measure-
ments, spectroscopic characterizations, CV diagrams, and
NMR spectra. This material is available free of charge via the
(14)
Bauza, A.; Mooibroek, T. J.; Frontera, A. ChemPhysChem
2015, 16, 2496.
(15)
(16)
Wang, H.; Wang, W.; Jin, W. J. Chem. Rev. 2016, 116, 5072.
(a) Gdaniec, M.; Jankowski, W.; Milewska, M. J.; Polonski,
AUTHOR INFORMATION
Corresponding Author
T. Angew. Chem. Int. Ed. 2003, 42, 3903; (b) Hori, A.; Shinohe, A.;
Yamasaki, M.; Nishibori, E.; Aoyagi, S.; Sakata, M. Angew. Chem. Int.
Ed. 2007, 46, 7617.
(17)
(a) Xu, R.; Gramlich, V.; Frauenrath, H. J. Am. Chem. Soc.
Notes
2006, 128, 5541; (b) Xu, R.; Schweizer, W. B.; Frauenrath, H. J. Am.
Chem. Soc. 2008, 130, 11437.
The authors declare no competing financial interests.
(18)
(a) El-azizi, Y.; Schmitzer, A.; Collins, S. K. Angew. Chem.
ACKNOWLEDGMENT
Int. Ed. 2006, 45, 968; (b) Holland, M. C.; Paul, S.; Schweizer, W. B.;
Bergander, K.; Muck-Lichtenfeld, C.; Lakhdar, S.; Mayr, H.; Gilmour,
R. Angew. Chem. Int. Ed. 2013, 52, 7967.
The authors acknowledge the support from the University of
Nebraska−Lincoln. We also thank the Donors of the Ameri-
can Chemical Society Petroleum Research Fund (53678-
DNI10) and National Science Foundation (DMR-1554918) for
partial support of this research.
(19)
(a) Hubig, S. M.; Rathore, R.; Kochi, J. K. J. Am. Chem. Soc.
1999, 121, 617; (b) Luo, P.; Dinnocenzo, J. P.; Merkel, P. B.; Young, R.
H.; Farid, S. J. Org. Chem. 2012, 77, 1632.
(20)
1617.
(21)
Tucker, J. W.; Stephenson, C. R. J. Org. Chem. 2012, 77,
Systematic measurement of Kc and reaction rate (vide infra)
REFERENCES
in polar solvent DMA was complicated by the high tendency of
forming solid Py3:FA complexes. Nevertheless, in a solvent mixture of
DMA and CDCl3 (v:v = 1:1), Kc was determined for Py2:HFB (2 M–1),
Py2:PFB (1 M–1), and Py2:TFB (0.25 M–1), which also follows a similar
trend as those measured in CDCl3.
(1)
(a) Julliard, M.; Chanon, M. Chem. Rev. 1983, 83, 425; (b)
Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401; (c) Mueller, F.;
Mattay, J. Chem. Rev. 1993, 93, 99; (d) Rossi, R. A.; Pierini, A. B.;
Peñéñory, A. B. Chem. Rev. 2003, 103, 71; (e) Houmam, A. Chem. Rev.
2008, 108, 2180; (f) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev.
2016, 116, 9850.
(22)
(a) Collings, J. C.; Roscoe, K. P.; Robins, E. G.; Batsanov, A.
S.; Stimson, L. M.; Howard, J. A. K.; Clark, S. J.; Marder, T. B. New J.
Chem. 2002, 26, 1740; (b) Pang, X.; Wang, H.; Wang, W.; Jin, W. J.
Cryst. Growth Des. 2015, 15, 4938.
(2)
(a) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev.
2011, 40, 102; (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem.
Rev. 2013, 113, 5322; (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343,
1239176; (d) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355;
(e) Hari, D. P.; König, B. Chem. Commun. 2014, 50, 6688; (f)
Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059; (g)
Pitre, S. P.; McTiernan, C. D.; Scaiano, J. C. Acc. Chem. Res. 2016, 49,
1320; (h) Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250; (i) Luo,
J.; Zhang, J. ACS Catal. 2016, 873.
(23)
(a) Bondi, A. J. Phys. Chem. 1964, 68, 441; (b) Alvarez, S.
Dalton Trans. 2013, 42, 8617.
(24)
A 90% HDF yield in 24h using Ir(ppy)3 as the photocatalyst
was reported (see reference 13c). The drastic difference in reaction
yield should be most likely attributed to the light source: a blue LED
strip was used in their work.
(25)
(a) Saveant, J. M. J. Phys. Chem. 1994, 98, 3716; (b)
(3)
(4)
Marcus, R. A. Angew. Chem. Int. Ed. 1993, 32, 1111.
(a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am.
Costentin, C.; Robert, M.; Saveant, J. M. J. Am. Chem. Soc. 2004, 126,
16051; (c) Higashino, S.; Saeki, A.; Okamoto, K.; Tagawa, S.; Kozawa,
T. J. Phys. Chem. A 2010, 114, 8069.
Chem. Soc. 2008, 130, 12886; (b) Du, J.; Skubi, K. L.; Schultz, D. M.;
Yoon, T. P. Science 2014, 344, 392; (c) Amador, A. G.; Sherbrook, E.
M.; Yoon, T. P. J. Am. Chem. Soc. 2016, 138, 4722.
(26)
Under the reaction condition, Py2:HFB and Py3:HFB formed
solid complexes.
(5)
Du, J.; Espelt, L. R.; Guzei, I. A.; Yoon, T. P. Chem. Sci.
(27)
Rathore, R.; Hubig, S. M.; Kochi, J. K. J. Am. Chem. Soc.
2011, 2, 2115.
1997, 119, 11468.
(6)
(7)
Neumann, M.; Zeitler, K. Chem.-Eur. J. 2013, 19, 6950.
(a) Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322,
(28)
(a) Yim, M. B.; Wood, D. E. J. Am. Chem. Soc. 1976, 98,
2053; (b) Shoute, L. C. T.; Mittal, J. P. J. Phys. Chem. 1993, 97, 379.
77; (b) Pirnot, M. T.; Rankic, D. A.; Martin, D. B.; MacMillan, D. W.
Science 2013, 339, 1593; (c) Jin, J.; MacMillan, D. W. Nature 2015, 525,
87.
(29)
(30)
Freeman, P. K.; Srinivasa, R. J. Org. Chem. 1987, 52, 252.
Laev, S. S.; Shteingarts, V. D. J. Fluorine Chem. 1999, 96,
175.
(31)
7206.
(32)
10.1039/c6sc02422j.
(8)
(9)
Taube, H. Angew. Chem. Int. Ed. 1984, 23, 329.
(a) Asahi, T.; Mataga, N. J. Phys. Chem. 1989, 93, 6575; (b)
Singh, A.; Kubik, J. J.; Weaver, J. D. Chem. Sci. 2015, 6,
Singh, A.; Fennell, C.; Weaver, J. D. Chem. Sci. 2016,
Asahi, T.; Mataga, N. J. Phys. Chem. 1991, 95, 1956.
(10) (a) Foster, R. J. Phys. Chem. 1980, 84, 2135; (b) Kochi, J. K.
Angew. Chem. Int. Ed. 1988, 27, 1227; (c) Rosokha, S. V.; Kochi, J. K.
Acc. Chem. Res. 2008, 41, 641.
(33)
(a) Zhao, Y.; Cotelle, Y.; Sakai, N.; Matile, S. J. Am. Chem.
Soc. 2016, 138, 4270; (b) Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney,
A. C. Acc. Chem. Res. 2016, 49, 1061; (c) Kennedy, C. R.; Lin, S.;
Jacobsen, E. N. Angew. Chem. Int. Ed. 2016, 55, 12596.
(11)
(a) Gardner, H. C.; Kochi, J. K. J. Am. Chem. Soc. 1976, 98,
2460; (b) Fukuzumi, S.; Mochida, K.; Kochi, J. K. J. Am. Chem. Soc.
ACS Paragon Plus Environment