Table 1. Lifetime and Rate Constants of Carbene 2 with
2,3-Dimethyl-2-butene (TME) and Pyridine in Deoxygenated
Freon-113 Containing 7 mM Pyridine
PhSCHb
PhSCF2
ClCH4
τ (CF2ClCFCl2, Ar) ns
τ (CF2ClCFCl2, air) ns
2000
800
2000
<20
<20
a
a
k
k
k
PYR, M-1 s-1
TME, M-1 s-1
AC, M-1 s-1
2.5 × 108
8.9 × 107
3.0 × 107
-10.14
2.26
2.0 × 107
5.0 × 106 b
2.0 × 106
-10.74
a
E(HOMO) eV8,c
E(LUMO) eV8,c
-10.97
0.97
Figure 3. Optimized structure (B3LYP/6-31g(d)) of phenylsulfanyl
carbene 2. Calculated selected bond lengths: d(C8S7) ) 1.66 Å;
d(C8H14) ) 1.10 Å; angle at the carbene carbon S7C8H14 ) 103.8°.
2.09
a Lifetime too short to measure, but the bimolecular rate constant is likely
∼109 M-1 s-1; see text. b This work. c Orbital energies were calculated (HF
4-31G) as described by Rondan, N. G.; Houk, K. N.; Moss R.A, J. Am.
Chem. Soc. 1980, 102, 1770 to maintain consistency with earlier studies.
The carbene lone-pair is the HOMO of ClCH but is not the HOMO of
PhSCH and PhSCF. To retain consistency with earlier work, we will use
the energy of the carbene lone pair.
phenylsulfanylcarbene is also much less reactive toward
pyridine and TME than chlorocarbene (Table 1).
These observations can be understood with the aid of DFT
calculations.8 The optimized structure of phenylsulfanylcar-
bene 2 is shown in Figure 3. A natural population analysis
(NPA)12 of carbene 2 and of chlorocarbene calculated at the
same level of theory is shown in Table 2. This analysis
The carbene lifetime in aerated samples is shortened from
2.0 to 0.8 µs. This result is somewhat surprising, as singlet
carbenes typically do not react rapidly with oxygen. This
observation is not unprecedented, however, as Liu et al. have
previously reported such behavior with p-nitrophenylchlo-
rocarbene.10 At the B3LYP/6-31G(d) level of theory singlet
2 is predicted to be 17.7 kcal/mol more stable than the
corresponding triplet state of the carbene. Thus, it seems very
unlikely that a small equilibrium quantity of triplet 2 is
responsible for the observed reaction of phenylsulfanylcar-
bene with oxygen.
Phenylsulfanylcarbene 2 is found to be a much longer-
lived species than chlorocarbene, which has a lifetime of
less than 20 ns in Freon-113 at ambient temperature.4 This
very short lifetime prevented measurement of its absolute
rate constant of reaction with pyridine. It was possible to
determine that kTME/kPYR ) 1.01 in cyclohexane at ambient
temperature. The absolute value of kPYR was assumed to be
8.0 × 109 M-1 s-1 (average of the kPYR values of chlorom-
ethyl-, chlorobenzyl-, and dichlorocarbene).11 Therefore
Table 2. Natural Population Analysis (B3LYP/6-31g(d)) for
Phenylsulfanylcarbene, Fluorophenylsulfanylcarbene, and
Chlorocarbenea
PhS-CH
PhS-CF
HCCl
atom
no.
natural
atom
no.
natural
atom
no.
natural
charge
charge
charge
C1
C2
C3
C4
C5
C6
S7
C8*
H14
-0.23
-0.23
-0.22
-0.22
-0.22
-0.23
0.47
C1*
F2
S3
C4
C5
C6
C7
C8
C9
0.11
-0.33
0.33
-0.21
-0.23
-0.22
-0.22
-0.23
-0.23
C1*
Cl2
H3
-0.15
0.024
0.13
-0.54
0.18
a Asterisk denotes carbenic carbon.
(8) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B 1998, 37, 785. (c) Frisch, M. J.; Trucks, G.
W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.;
Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;
Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala,
P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,
J. V.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian,
Inc.: Pittsburgh, PA, 1998. (d) Casida, M. E.; Jamorski, C.; Casida, K. C.;
Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.
clearly shows that there is substantial π back-bonding from
sulfur to the carbene center. The C8-S7 bond length of 1.66
Å is much closer to that of a typical carbon-sulfur double
bond (1.60 Å) than to that of a single bond (1.82 Å).13 This
leads to greater charge separation in the case of phenylsul-
fanylcarbene relative to chlorocarbene. The charge on the
carbenic center is -0.54 (versus -0.15 for chlorocarbene).
This explains in a simple way why PhSCH reacts more
rapidly with methyl acrylate than does fluorophenylsulfa-
(9) Platz, M. S. In Carbene Chemistry. From Fleeting Intermediates to
Powerful Reagents; Bertrand, G., Ed.; FontisMedia S.A.: Lausanne, 2002;
p 27.
(10) Liu, M. T. H.; Bonneau, R.; Jefford, C. W. Chem. Commun. 1990,
21, 1482.
Am. Chem. Soc. 1989, 111, 5973. (e) Jackson, J. E.; Soundarajan, N.; White,
W.; Liu, M. T. H.; Bonneau, R. J.; Platz, M. S. J. Am. Chem. Soc. 1989,
111, 6874. (f) Chateauneuf, J. E.; Johnson, R. P.; Kirehoff, M. M. J. Am.
Chem. Soc. 1990, 112, 3217.
(11) (a) Liu, M. T. H.; Bonneau, R. J. J. Am. Chem. Soc. 1989, 111,
6873. (b) Jackson, J. E.; Soundarajan, N.; Platz, M. S.; Liu, M. T. H. J.
Am. Chem. Soc. 1988, 110, 5595. (c) Liu, M. T. H.; Bonneau, R. J. J. Phys.
Chem. 1989, 93, 7298. (d) Liu, M. T. H.; Bonneau, R. J.; Rayez, M. T. J.
(12) Reed, A. E.; Weinhold, F. A.; Curtiss, C. A. Chem. ReV. 1988, 88,
899.
(13) CRC Handbook of Chemistry and Physics; Lide, D. A.; CRC
Press: Boca Raton, FL, 2003.
Org. Lett., Vol. 6, No. 5, 2004
817