Communications
j) B. Supudompol, K. Likhitwitayawuid, P. J. Houghton, Phyto-
chemistry 2004, 65, 2589 – 2594; k) N. S. Aminah, S. A. Achmad,
N. Aimi, E. L. Ghisalberti, E. H. Hakim, M. Kitajima, Y. M.
Syah, H. Takayama, Filoterapia 2002, 73, 501 – 507.
MeOH) then provided a protected regioisomeric analogue of
hemsleyanol E in 78% yield, and oxidation of the resultant
alcohol led to the corresponding diptoindonesin A congener
as expressed by structure 37.
[4] For selected references, see: a) M. Ohyama, T. Tanaka, T. Ito, M.
Iinuma, K. F. Bastow, K.-H. Lee, Bioorg. Med. Chem. Lett. 1999,
9, 3057 – 3060; b) K. Ohguchi, T. Tanaka, T. Ito, M. Iinuma, K.
Matsumoto, Y. Akao, Y. Nozawa, Biosci. Biotechnol. Biochem.
2003, 67, 1587 – 1589; c) K. Ohguchi, Y. Akao, K. Matsumoto, T.
Tanaka, T. Ito, M. Iinuma, Y. Nozawa, Biosci. Biotechnol.
Biochem. 2005, 69, 353 – 356; d) T. Ito, Y. Akao, H. Yi, K.
Ohguchi, K. Matsumoto, T. Tanaka, M. Iinuma, Y. Nozawa,
Carcinogenesis 2003, 24, 1489 – 1497.
[5] For an insightful discussion on this topic, see: M. A. Fischbach, J.
Clardy, Nat. Chem. Biol. 2007, 3, 353 – 355.
[6] J. M. Aguirre, E. N. Alesso, G. Y. M. Iglesias, J. Chem. Soc.
Perkin Trans. 1 1999, 1353 – 1358.
[7] X.-C. Li, D. Ferreira, Tetrahedron 2003, 59, 1501 – 1507.
[8] Y. Takaya, K. Terashima, J. Ito, Y.-H. He, M. Takeoka, N.
Yamaguchi, M. Niwa, Tetrahedron 2005, 61, 10285 – 10290.
[9] P. Langcake, R. J. Pryce, J. Chem. Soc. Chem. Commun. 1977,
208 – 210.
[10] M. Sako, H. Hosokawa, T. Ito, M. Iinuma, J. Org. Chem. 2004, 69,
2598 – 2600.
[11] W. Li, H. Li, Z. Hou, Angew. Chem. 2006, 118, 7771 – 7773;
Angew. Chem. Int. Ed. 2006, 45, 7609 – 7611.
In conclusion, we have established that the entire array of
carbogenic complexity posed by the resveratrol family of
natural products, along with several additional isosteres, can
be accessed smoothly and selectively from building blocks
quite distinct from the compound postulated for their
biosynthesis.[29] Apart from revealing previously hidden
structural relationships within the architectural diversity
possessed by this compound class, the efficiency of the
developed routes (four to seven steps from 9 and 18, each
natural product accessed in 7 to 46% overall yield from
commercial materials) ensures that the biochemical studies
needed to elucidate their full medicinal potential can finally
begin in earnest. Future efforts are focused not only on
achieving this critical objective, but also on synthesizing the
most complex members of this fascinating family of secondary
metabolites. We expect that the general principle illustrated
by this work, namely the use of common, but nonobvious,
precursors to access molecular diversity selectively through
reagent-induced cascades, will prove applicable to many
classes of polymeric molecules.
[12] In fact, there are many members of this family with an odd
number of aryl rings.
[13] Prepared in four steps in 80% overall yield from 3,5-dimethoxy-
benzaldehyde; see the Supporting Information for more details.
Inspiration for part of this sequence came from the following
total synthesis of resveratrol: L. Botella, C. Nꢁjera, Tetrahedron
2004, 60, 5563 – 5570.
[14] For a recent example of this deprotection in the context of a total
synthesis, see: P. S. Baran, N. Z. Burns, J. Am. Chem. Soc. 2006,
128, 3908 – 3909.
Received: July 24, 2007
Published online: September 21, 2007
Keywords: chemoselectivity · natural products · resveratrol ·
.
total synthesis
[15] Sulfide 16 could also be accessed in 82% yield from alcohol 15
upon its treatment with TsOH and p-methoxy-a-toluenethiol in
CH2Cl2 at 258C; see the Supporting Information for full details.
[16] For a recent review on this reaction, see: R. J. K. Taylor, Chem.
Commun. 1999, 217 – 227.
[17] C. Y. Meyers, A. M. Malte, W. S. Matthews, J. Am. Chem. Soc.
1969, 91, 7510 – 7512. The separable Z-alkene isomer produced
in this Ramberg–Bäcklund step is a fully protected form of the
natural product parthenocissin A: T. Tanaka, M. Iinuma, H.
Murata, Phytochemistry 1998, 48, 1045 – 1049.
[18] This final deprotection step produced a 5:1 mixture of both
ampelopsin D (2) and isoampelopsin D (17), which were
obtained in pure form in near quantitative yield by treating the
product mixture with Ac2O, chromatographically separating the
resultant acetates, and using KCN in MeOH to then effect ester
hydrolysis.
[1] For selected references, see: a) M. Jang, L. Cai, G. O. Udeani,
K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong,
N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon,
J. M. Pezzuto, Science 1997, 275, 218 – 220; b) K. T. Howitz, K. J.
Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood,
R. E. Zipkin, P. Chung, A. Kisielewski, L.-L. Zhang, B. Scherer,
D. A. Sinclair, Nature 2003, 425, 191 – 196; c) L. M. Szewczuk, L.
Forti, L. A. Stivala, T. M. Penning, J. Biol. Chem. 2004, 279,
22727 – 22737; d) J. A. Baur, K. J. Pearson, N. L. Price, H. A.
Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G.
Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O.
Boss, D. Gwinn, M. Wang, S. Ramswamy, K. W. Fishbein, R. G.
Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P.
Puigserver, D. K. Ingram, R. de Cabo, D. A. Sinclair, Nature
2006, 444, 337 – 342.
[2] For some early commentary, see: G. J. Soleas, E. P. Diamandis,
D. M. Goldberg, Clin. Biochem. 1997, 30, 91 – 113.
[19] Y. Takaya, K.-X. Yan, K. Terashima, Y.-H. He, M. Niwa,
Tetrahedron 2002, 58, 9265 – 9271.
[20] Isopaucifloral F (22) represents a likely, but not yet isolated,
natural product structure.
[3] a) Y. Oshima, Y. Ueno, K. Hisamachi, M. Takeshita, Tetrahedron
1993, 49, 5801 – 5804; b) Y. Oshima, Y. Ueno, Phytochemistry
1993, 33, 179 – 182; c) M. Niwa, J. Ito, K. Terashima, T. Koizumi,
Y. Takaya, K.-X. Yan, Heterocycles 2000, 53, 1475 – 1478; d) J.
Ito, T. Tanaka, M. Iinuma, K. Nakaya, Y. Takahashi, R. Sawa, J.
Murata, D. Darnaedi, J. Nat. Prod. 2004, 67, 932 – 937; e) H.-F.
Luo, L.-P. Zhang, C.-Q. Hu, Tetrahedron 2001, 57, 4849 – 4854;
f) M. A. Khan, S. G. Nabi, S. Prakash, A. Zaman, Phytochem-
istry 1986, 25, 1945 – 1948; g) H. A. Guebailia, K. Chira, T.
Richard, T. Mabrouk, A. Furiga, X. Vitrac, J.-P. Monti, J.-C.
Delaunay, J.-M. Merillon, J. Agric. Food Chem. 2006, 54, 9559 –
9564; h) T. Tanaka, T. Ito, K. Nakaya, M. Iinuma, S. Riswan,
Phytochemistry 2000, 54, 63 – 69; i) Y. Takaya, K.-X. Yan, K.
Terashima, J. Ito, M. Niwa, Tetrahedron 2002, 58, 7259 – 7265;
[21] S. A. Adesanya, R. Nia, M.-T. Martin, N. Boukamcha, A.
Montagnac, M. Paꢂs, J. Nat. Prod. 1999, 62, 1694 – 1695.
[22] The use of proton as an activating electrophile led in all cases to
internal alkenes, such as that possessed by isoampelopsin D (17,
Scheme 1), whereas all efforts to form epoxides led to intract-
able mixtures of compounds or unchanged starting material.
[23] For an interesting commentary on utilizing bromine as a
protective device, see: F. Effenberger, Angew. Chem. 2002,
114, 1775 – 1776; Angew. Chem. Int. Ed. 2002, 41, 1699 – 1700.
[24] With the opposite array of ring systems, the second bromine
atom attached to this molecule on the pendant 3,5-dimethoxy-
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 8186 –8191