C O M M U N I C A T I O N S
Scheme 6
Figure 1. (1) TLC and (2) HPLC analysis of incubation mixture without
SpnJ (A) or with SpnJ (B)21 (TLC: silica gel, CH2Cl2/MeOH ) 93:7;
HPLC: C-18, 2% NH4OAc/CH3CN ) 70:30 to 20:80 over 120 min).
remaining enzymes (SpnF, SpnL, and SpnM) believed to be
involved in the cross-bridging event as well as their biological roles
leading to an understanding of the mechanism of formation for the
spinosyn aglycone.
Acknowledgment. This work was supported by grants from
the National Institutes of Health (GM35906 and GM54346).
Supporting Information Available: Experimental procedures
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Kirst, H. A.; Michel, K. H.; Martin, J. W.; Creemer, L. C.; Chio, E. H.;
Yao, R. C.; Nakatsukasa, W. M.; Boeck, L. D.; Occolowitz, J. L.; Paschal,
J. W.; Deeter, J. B.; Jones, N. D.; Thompson, G. D. Tetrahedron Lett.
1991, 32, 4839-4842.
With sufficient quantities of 3′ and 4 now available, we evaluated
whether the linear polyketide thioester 3′ or the macrolactone 4 is
a substrate for SpnJ, which is predicted to be an oxidase. Since the
functions of SpnF, SpnL, and SpnM are not obvious, it would be
interesting to examine whether SpnJ is a multifunctional enzyme
capable of catalyzing not only oxidation at C-15 but also depro-
tonation at C-14 to initiate the Michael addition to form a C-C
bond between C-3 and C-14, or the 1,4-elimination of the 11-OH
group setting the stage for a possible Diels-Alder-type [4 + 2]
cycloaddition.
To characterize SpnJ, the spnJ gene was cloned into a pET28b-
(+) vector and the resulting construct was expressed in E. coli
BL21(DE3) cells.22 After induction under 25 mM isopropyl â-D-
thiogalactopyranoside (IPTG), the N-terminal His6-tagged SpnJ
protein (60.6 kDa) was purified to near homogeneity using Ni-
NTA resin.22 The absorption spectrum of the purified protein is
typical for that of a flavoprotein. To determine the function of SpnJ,
SpnJ (20 µM) was incubated with 2 mM 3′ and 40 µM FAD in
Tris-HCl buffer (pH 8.0) at 29 °C. No new product was detected
after overnight incubation. Because 3′ cannot be processed by SpnJ,
it is reasonable to conclude that 3 is not a substrate for SpnJ.
In contrast, TLC and reverse-phase HPLC analysis of the
incubation mixture containing SpnJ (20 µM), 2 mM 4, and 40 µM
FAD in Tris-HCl buffer (pH 8.0) revealed the time-dependent
formation of a new product (nearly quantitative conversion after 4
h at 29 °C, see Figure 1), which was identified by 1H and 13C NMR
spectroscopy as well as HR-CIMS analysis as the C-15 ketone
derivative 5.22 These results clearly established that SpnJ is a flavin
oxidase and 4 is the substrate for SpnJ. The fact that no trace of
cross-bridging products was detected indicated that SpnJ is only a
monofunctional oxidase. These results provide strong support for
the conversion of 4 to 5 as the first step in the post-cyclization
reactions (vide supra) and set the stage for the study of the putative
Diels-Alderase activity.
(2) (a) Sparks, T. C.; Crouse, G. D.; Durst, G. Pest. Manag. Sci. 2001, 57,
896-905. (b) Salgado, V. L.; Sparks, T. C. In ComprehensiVe Molecular
Insect Science; Iatrou, K., Gill, S. S., Gilbert, L. I., Eds.; Pergamon:
Oxford, 2005; Vol. 6, pp 137-173.
(3) Waldron, C.; Matsushima, P.; Rosteck, P. R., Jr.; Broughton, M. C.; Turner,
J.; Madduri, K.; Crawford, K. P.; Merlo, D. J.; Baltz, R. H. Chem. Biol.
2001, 8, 487-499.
(4) Martin, C. J.; Timoney, M. C.; Sheridan, R. M.; Kendrew, S. G.;
Wilkinson, B.; Staunton, J. C.; Leadlay, P. F. Org. Biomol. Chem. 2003,
1, 4144-4147.
(5) Gullon, S.; Olano, C.; Abdelfattah, M. S.; Brana, A. F.; Rohr, J.; Mendez,
C.; Salas, J. A. Appl. EnViron. Microbiol. 2006, 72, 4172-4183.
(6) (a) Solanapyrone Synthase: Katayama, K.; Kobayashi, T.; Oikawa, H.;
Honma, M.; Ichihara, A. Biochim. Biophys. Acta 1998, 1384, 387-395.
(b) Lovastatin biosynthesis: Auclair, K.; Sutherland, A.; Kennedy, J.;
Witter, D. J.; Van den Heever, J. P.; Hutchinson, C. R.; Vederas, J. C. J.
Am. Chem. Soc. 2000, 122, 11519-11520. Macrophomate synthase: (c)
Ose, T.; Watanabe, K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.;
Oikawa, H.; Tanaka, I. Nature 2003, 422, 185-189. (d) Guimaraes, C.
R.; Udier-Blagovic, M.; Jorgensen, W. L. J. Am. Chem. Soc. 2005, 127,
3577-3588. (e) Serafimov, J. M.; Westfeld, T.; Meier, B. H.; Hilvert, D.
J. Am. Chem. Soc. 2007, 129, 9580-9581. (f) Review: Oikawa, H. Bull.
Chem. Soc. Jpn. 2005, 78, 537-554. (g) Stocking, E. M.; Williams, R.
M. Angew. Chem., Int. Ed. 2003, 42, 3078-3115.
(7) The configurations at C-9, -11, -15,4 and -17 were assigned based on the
fact that the four ketoreductase (KR) domains in the spn PKS assembly
are all type A KRs (Caffrey, P. ChemBioChem 2003, 4, 654-657).22
(8) Molander, G. A.; McWilliams, J. C.; Noll, B. C. J. Am. Chem. Soc. 1997,
119, 1265-1276.
(9) Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. Chem. Lett. 1988,
843-846.
(10) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem.
2001, 66, 894-902.
(11) Heathcock, C. H.; Pirrung, M. C.; Sohn, J. E. J. Org. Chem. 1979, 44,
4294-4299.
(12) Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U.
S. J. Am. Chem. Soc. 1990, 112, 2389-2392.
(13) Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res.
1998, 31, 9-17.
(14) Paquette, L. A.; Chang, S. K. Org. Lett. 2005, 7, 3111-3114.
(15) Saniere, M.; Lemerrer, Y.; Barbe, B.; Koscielniak, T.; Depezay, J. C.
Tetrahedron 1989, 45, 7317-28.
(16) Yu, W.; Mei, Y.; Kang, Y.; Hua, Z.; Jin, Z. Org. Lett. 2004, 6, 3217-
3219.
(17) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497-4513.
(18) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998,
26-28.
In summary, the experiments described herein detail a convergent
synthesis of 4 postulated to be involved in spinosyn biosynthesis.
More importantly, we have validated the catalytic function of SpnJ
and established 4 as the precursor of the tricyclic nucleus of
spinosyns. Future work will encompass characterization of the
(19) Rodriguez, J.; Waegell, B. Synthesis 1988, 534-535.
(20) Jeffery, T. Tetrahedron Lett. 1985, 26, 2667-2670.
(21) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989-1993.
(22) See Supporting Information for spectral data and experimental details.
JA076580I
9
14584 J. AM. CHEM. SOC. VOL. 129, NO. 47, 2007