ChemComm
Communication
not only non-drug-resistant NA but also a drug-resistant NA was
developed using photo-irradiation and the hybrids. The present
photodegradation method using a hybrid molecule consisting
of a protein photodegradation agent and a native ligand for
the specific enzyme allows development of new strategies for
inhibiting drug-resistant enzymes with a wide range of applica-
tions. In addition, the results presented here contribute to the
molecular design of novel artificial protein photodegrading
agents and agents for controlling the functions of proteins
involved in many diseases or infections. Additional studies with
respect to the target-selectivity are currently underway in our
laboratory.
This research was supported in part by the High-Tech
Research Center Project for Private Universities: Matching Fund
Subsidy, 2006–2010, Scientific Research (B) (No. 20310140 and
23310153) and Scientific Research on Innovative Areas ‘‘Chemical
Biology of Natural Products’’ from the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT).
Fig. 5 Relation between concentration of 2 or 3 and drug-resistant NA [influ-
enza A virus (A/California/04/2009) H1N1 (H274Y) substrain] activity (a) without
photo-irradiation and (b) with photo-irradiation (UV lamp, 365 nm, 100 W,
10 cm, 15 or 60 min). The concentration–inhibition curve represents the esti-
mated IC50 value. Assays were performed in Tris buffer (pH 7.5, 50 mM) at 25 1C.
Nonlinear regression analysis with Prisms version 5 (Graphpad Software, Inc.)
was used for curve fitting of the substrate cleavage reaction.
and drug (oseltamivir)-resistant NA, respectively (Fig. 6a). The
inhibitory activity for drug (oseltamivir)-resistant NA decreased
151-fold compared to that for non-drug (oseltamivir)-resistant
NA. Furthermore, the IC50 values for 2,3-didehydro-2-deoxy-N-
acetylneuraminic acid (DANA),2a,13 which is the lead drug of
oseltamivir and zanamivir, were 6.45 and 7.69 mM against non-
drug (oseltamivir)-resistant NA and drug (oseltamivir)-resistant NA,
respectively (Fig. 6b). The inhibitory activity for drug (oseltamivir)-
resistant NA was similar to that for non-drug (oseltamivir)-resistant
NA. The results revealed that, although the inhibition activities of 2
and 3 against drug (oseltamivir)-resistant NA were slightly
weaker than that of oseltamivir, 2 and 3 inhibited the activity
of drug (oseltamivir)-resistant NA much more efficiently under
photo-irradiation. In addition, 2 and 3 inhibited not only non-
drug-resistant NA but also a drug-resistant NA at the same level.
Furthermore, the inhibitory activities of 3 against non-drug
(oseltamivir)-resistant NA and drug (oseltamivir)-resistant NA
upon photo-irradiation were greater than those of the lead drug
of oseltamivir, DANA.
Notes and references
1 T. T. Hien, N. T. Liem, N. T. Dung, L. T. San, P. P. Mai, N. V. Chau,
P. T. Suu, V. C. Dong, L. T. Q. Mai, N. T. Thi, D. B. Khoa, L. P. Phat,
N. T. Truong, H. T. Long, C. V. Tung, L. T. Giang, N. D. Tho,
L. H. Nga, N. T. K. Tien, L. H. San, L. V. Tuan, C. Dolecek,
T. T. Thanh, M. De Jong, C. Schultsz, P. Cheng, W. Lim, P. Horby
and J. Farrar, N. Engl. J. Med., 2004, 350, 1179.
2 (a) M. von Itzstein, Nat. Rev. Drug Discovery, 2007, 6, 967;
(b) K. Huberman, R. W. Peluso and A. Moscona, Virology, 1995,
214, 294.
3 (a) A. Moscona, N. Engl. J. Med., 2005, 353, 1363; (b) E. De Clercq,
Nat. Rev. Drug Discovery, 2006, 5, 1015; (c) A. C. Schmidt, Drugs, 2004,
64, 2031.
4 (a) C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan,
N. Bischofberger, M. S. Chen, D. B. Mendel, C. Y. Tai, W. G. Laver and
R. C. Stevens, J. Am. Chem. Soc., 1997, 119, 681; (b) C. U. Kim, W. Lew,
M. A. Williams, H. Wu, L. Zhang, X. Chen, P. A. Escarpe, D. B. Mendel,
W. G. Laver and R. C. Stevens, J. Med. Chem., 1998, 41, 2451; (c) W. Lew,
X. Chen and C. U. Kim, Curr. Med. Chem., 2000, 7, 663; (d) K. McClellan
and C. M. Perry, Drugs, 2001, 61, 263.
5 (a) M. von Itzstein, W.-Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason,
B. Jin, T. V. Phan, M. L. Smythe, H. F. White, S. W. Oliver,
P. M. Colman, J. N. Varghese, D. M. Ryan, J. M. Woods,
R. C. Bethell, V. J. Hotham, J. M. Cameron and C. R. Penn, Nature,
1993, 363, 418; (b) N. R. Taylor and M. von Itzstein, J. Med. Chem.,
1994, 37, 616; (c) M. von Itzstein, J. C. Dyason, S. W. Oliver,
H. F. White, W.-Y. Wu, G. B. Kok and M. S. Pegg, J. Med. Chem.,
1996, 39, 388; (d) C. J. Dunn and K. L. Goa, Drugs, 1999, 58, 761.
6 A. Lackenby, O. Hungnes, S. G. Dudman, A. Meijer, W. J. Paget,
A. J. Hay and M. C. Zambon, Euro Surveill., 2008, 13, 8026.
7 A. Suzuki, M. Hasegawa, M. Ishii, S. Matsumura and K. Toshima,
Bioorg. Med. Chem. Lett., 2005, 15, 4624.
In conclusion, designed anthraquinone–sialic acid hybrids
degraded not only non-drug-resistant NA but also a drug-
resistant NA upon irradiation with long-wavelength UV light
in the absence of any additives and under neutral conditions.
Thus, a new and innovative method for effective inhibition of
8 Recombinant influenza virus H1N1 (A/California/04/2009) neurami-
nidases (wild type (non-drug (oseltamivir)-resistant) and H274Y
subtype (drug (oseltamivir)-resistant)) were purchased from Sino
Biological Inc.
9 (a) J. E. Wertz and J. R. Bolton, Electron Spin Resonance, McGraw-Hill,
NewYork, 1972; (b) H. M. Swartz, J. R. Bolton and D. C. Borg,
Biological Application of Electron Spin Resonance, Wiley, New York,
1972.
10 (a) Free Radicals in Biology and Medicine, ed. B. Haliwell and
J. M. C. Gutteridge, Oxford University Press, Oxford, 1985; (b) K. J. A.
Davies, J. Biol. Chem., 1987, 262, 9895; (c) M. J. Davies, Biochem.
Biophys. Res. Commun., 2003, 305, 761.
Fig. 6 Relation between concentration of oseltamivir or DANA and non-drug-
resistant NA [influenza A virus (A/California/04/2009) H1N1 substrain] or drug-
resistant NA [influenza A virus (A/California/04/2009) H1N1 (H274Y) substrain]
activity. (a) Oseltamivir and (b) DANA. The concentration–inhibition curve repre-
sents the estimated IC50 value. Assays were performed in Tris buffer (pH 7.5,
50 mM) at 25 1C. Nonlinear regression analysis with Prisms version 5 (Graphpad
Software, Inc.) was used for curve fitting of the substrate cleavage reaction.
´
11 M. Potier, L. Mameli, M. Belisle, L. Dallaire and S. B. Melançon,
Anal. Biochem., 1979, 94, 287.
12 H. J. Jeong, Y. B. Ryu, S.-J. Park, J. H. Kim, H.-J. Kwon, J. H. Kim,
K. H. Park, M.-C. Rho and W. S. Lee, Bioorg. Med. Chem., 2009,
17, 6816.
13 P. M. Colman, J. Antimicrob. Chemother., 1999, 44(Topic. B), 17.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1169--1171 1171