Scheme 1
.
Outline of Total Synthesis of (-)-Kainic Acid (1)
Scheme 2. Strategy for Second-Generation Synthesis
high diastereoselectivity. Finally, formation of the iso-
propenyl group and manipulation of the functional groups
furnished kainic acid 1. While the key intramolecular
Michael addition proved to be highly effective for the
formation of the fully elaborated pyrrolidine ring, synthetic
accessibility of the precursor 6 was not efficient since it
requires the chiral auxiliary-controlled construction of the
framework and the intramolecular olefin metathesis under
dilute reaction conditions. In this letter, we disclose our
second-generation intramolecular Michael addition route
with improved in situ preparation of the precursor 6. This
scalable route allowed us to synthesize (-)-kainic acid
in a 12-step longest linear sequence in 14% overall yield
from the commercially available, inexpensive azetidinone
13.
The strategy of our second-generation synthesis is il-
lustrated in Scheme 2. We planned to maintain the intramo-
lecular Michael addition to the key intermediate 8 and the
end game sequence established for the first-generation
synthesis. Retrosynthetically, if we were to append an amino
group to the intermediate 8, the resultant 9 would be easily
prepared from the azetidinone 11 by reductive opening of
the ꢀ-lactam ring, followed by installation of a glycine moiety
and lactone formation. Compound 11 could be obtained from
the commercially available azetidinone derivative 12,14 which
has been manufactured on an industrial scale as a starting
material for ꢀ-lactam antibiotic drugs such as imipenem.
Our synthesis commenced with the introduction of a
carbobutoxymethyl group on [3R(1′R, 4R)-4-acetoxy-3-[1-
(tert-butyldimethylsilyloxy)ethyl]-2-azetidinone (13, Kaneka
Corporation) using t-butyl bromozincacetate 1415 under
improved literature conditions15b (Scheme 3). Activation of
the ꢀ-lactam ring with a Cbz group followed by reduction
with NaBH4 afforded amino alcohol 17. Introduction of the
glycine moiety was then carried out by Mitsunobu reaction16
of 17 with Nosyl (Ns)-activated glycine ester 18 to provide
19.17 Upon treatment with trifluoroacetic acid, 19 underwent
cyclization to give lactone 20. Finally, switching from the
Ns group to the Boc group in one-pot furnished the desired
21 in 46% overall yield from 13.
aldol reaction between crotonamide detivative 3 and
acetaldehyde afforded an aldol product 4 as a single
isomer, which was converted to an acrylate derivative 5
by a six-step sequence. The fully functionalized trisub-
stituted pyrrolidine ring 7 was constructed by the ring-
closing metathesis followed by an intramolecular Michael
addition of the resultant R,ꢀ-unsaturated lactone 6 with
(11) For selected examples, see:(a) Ueno, Y.; Tanaka, K.; Ueyanagi,
J.; Nawa, H.; Sanno, Y.; Honjo, M.; Nakamori, R.; Sugawa, T.; Uchibayashi,
M.; Osugi, K.; Tatsuoka, S. Proc. Jpn. Acad. 1957, 33, 53. (b) Oppolzer,
W.; Thirring, K. J. Am. Chem. Soc. 1982, 104, 4978. (c) Takano, S.;
Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1988, 1204.
(d) Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J. Am. Chem. Soc.
1988, 110, 6467. (e) Baldwin, J. E.; Moloney, M. G.; Parsons, A. F.
Tetrahedron 1990, 46, 7263. (f) Jeong, N.; Yoo, S.-E.; Lee, S. J.; Lee,
S. H.; Chung, Y. K. Tetrahedron Lett. 1991, 32, 2137. (g) Barco, A.; Benetti,
S.; Pollini, G. P.; Spalluto, G.; Zanirato, V. J. Chem. Soc., Chem. Commun.
1991, 390. (h) Cooper, J.; Knight, D. W.; Gallagher, P. T. J. Chem. Soc.,
Perkin Trans. 1 1992, 553. (i) Takano, S.; Inomata, K.; Ogasawara, K.
J. Chem. Soc., Chem. Commun. 1992, 169. (j) Hatakeyama, S.; Sugawara,
K.; Takano, S. J. Chem. Soc., Chem. Commun. 1993, 125. (k) Yoo, S.-E.;
Lee, S. H. J. Org. Chem. 1994, 59, 6968. (l) Hanessian, S.; Ninkovic, S. J.
Org. Chem. 1996, 61, 5418. (m) Nakada, Y.; Sugahara, T.; Ogasawara, K.
Tetrahedron Lett. 1997, 38, 857. (n) Bachi, M. D.; Melman, A J. Org.
Chem. 1997, 62, 1896. (o) Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T.
Synlett 1997, 275. (p) Rubio, A.; Ezquerra, J.; Escribano, A.; Remuinan,
M. J.; Vaquero, J. J. Tetrahedron Lett. 1998, 39, 2171. (q) Cossy, J.; Cases,
M.; Pardo, D. G. Tetrahedron 1999, 55, 6153. (r) Campbell, A. D.; Taylor,
R. J. K.; Raynham, T. M. Chem. Commun. 1999, 245. (s) Chevliakov, M. V.;
Montgomery, J. J. Am. Chem. Soc. 1999, 121, 11139. (t) Miyata, O.; Ozawa,
Y.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 6199. (u) Nakagawa,
H.; Sugahara, T.; Ogasawara, K. Org. Lett. 2000, 2, 3181. (v) Xia, Q.;
Ganem, B. Org. Lett. 2001, 3, 485. (w) Hirasawa, H.; Taniguchi, T.;
Ogasawara, K. Tetrahedron Lett. 2001, 42, 7587. (x) Clayden, J.; Menet,
C. J.; Tchabanenko, K. Tetrahedron 2002, 58, 4727. (y) Mart´ınez, M. M.;
Hoppe, D. Eur. J. Org. Chem. 2005, 7, 1427. (z) Anderson, J. C.;
O’Loughlin, J. M. A.; Tornos, J. A. Org Biomol. Chem 2005, 3, 2741. (aa)
Trost, B. M.; Rudd, M. T J. Am. Chem. Soc. 2005, 127, 4763. (ab) Scott,
M. E.; Lautens, M. Org. Lett. 2005, 7, 3045. (ac) Poisson, J.-F.; Orellana,
A.; Greene, A. E. J. Org. Chem. 2005, 70, 10860.
(12) Morita, Y.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2005, 7, 4337.
Org. Lett., Vol. 10, No. 9, 2008
1712