A R T I C L E S
Scheme 2
Nieto-Oberhuber et al.
Figure 1.
electrophilicity and react with 1,6-enynes to form intermediates
II that are less prone to undergo skeletal rearrangement, which
allows their intermolecular trapping by alkenes to form cyclo-
propanes.7 Recently, we have prepared new gold(I) complex 5
bearing tris(2,6-di-tert-butylphenyl)phosphite as a bulky ligand,
whose cationic derivative formed in situ by chloride abstraction
with AgSbF6 is the most electrophilic Au(I) catalyst that we
have tested thus far in reactions with substituted enynes (Figure
1).7
Cationic complexes formed in situ from 1a-d catalyze the
formal [4+2] cycloaddition of substituted dienynes 6 and
arylenynes 9 under mild conditions (Scheme 2).12 In contrast,
the thermal intramolecular [4+2] cycloaddition of dienynes
of type 6 has been described to proceed at temperatures as
high as 600 °C,18 although milder conditions (heating at 110-
250 °C) are required for the intramolecular reaction of conju-
gated enynes with ynamines.19 Reaction of substrates 9 to give
10 is of particular interest as pycnantuquinones A (11a) and B
(11b)20 have the carbon skeleton of tricyclic compounds 10.
These quinones have been isolated from an African tree and
display antihyperglycemic activity in mice.20 Recently, pyc-
nantuquinone C (11c), a new member of this family, has been
isolated from an alga.21 Products somewhat related to 10 have
been obtained by Grigg et al. by palladium-catalyzed intermo-
lecular [2+2+2] cycloaddition reaction of enynes with aryl or
vinyl halides22 and by Ohno et al. by intramolecular Pd-catalyzed
tandem cyclization of bromoenynes.23 A different type of
cyclization, in which the phenyl group participates in the
process, has been observed in the gold-catalyzed cycloisomer-
ization of allenynes.24
substituted alkynes, in particular those with an aryl group, are
quite reluctant to undergo cycloisomerization and alkoxycy-
clization reactions.2d,10a We decided to prepare new gold(I)
complexes bearing bulky, biphenyl-based phosphines 1a-d,
which have been shown by Buchwald et al. to be excellent
ligands for Pd-catalyzed reactions.11 Indeed, upon being mixed
with Ag(I) salts, complexes 1a-d lead to very active catalysts.12
More convenient are cationic complexes 2a-b and 3,6b which
are stable crystalline solids that can be handled under ordinary
conditions, yet are very reactive as catalysts in a variety of
transformations.13,14,15 The structures of 1a-d, 2a-b, and 3 have
been confirmed by X-ray crystallography.16 Gold complexes
with N-heterocyclic ligands have also been prepared.12,17 These
complexes bearing these highly donating ligands are of moderate
(6) (a) Nieto-Oberhuber, C.; Lo´pez, S.; Mun˜oz, M. P.; Ca´rdenas, D. J.; Bun˜uel,
E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44, 6146-
6148. (b) Nieto-Oberhuber, C.; Lo´pez, S.; Jime´nez-Nu´n˜ez, E.; Echavarren,
A. M. Chem. Eur. J. 2006, 11, 5916-5923. (c) Ferrer, C.; Raducan, M.;
Nevado, C.; Claverie, C. K.; Echavarren, A. M. Tetrahedron 2007, 63,
6306-6316. (d) Cabello, N.; Jime´nez-Nu´n˜ez, E.; Bun˜uel, E.; Ca´rdenas,
D.; Echavarren, A. M. Eur. J. Org. Chem. 2007, 4217-4223.
(7) Lo´pez, S.; Herrero-Go´mez, E.; Pe´rez-Gala´n, P.; Nieto-Oberhuber, C.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029-6032.
(8) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Angew. Chem., Int. Ed. 2007, 46,
1141-1144.
(9) Cabello, N.; Rodr´ıguez, C.; Echavarren, A. M. Synlett 2007, 1753-1758.
(10) (a) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Bun˜uel, E.; Nevado, C.; Ca´rdenas,
D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402-2406.
(b) Nieto-Oberhuber, C.; Mun˜oz, M. P.; Lo´pez, S.; Jime´nez-Nu´n˜ez, E.;
Nevado, C.; Herrero-Go´mez, E.; Raducan, M.; Echavarren, A. M. Chem.
Eur. J. 2006, 11, 1677-1693.
Here, we describe the scope and limitations of the gold-
catalyzed [4+2] cycloaddition reaction. For this reaction, we
have found that in addition to 1a-d and 2a-b, precatalyst 5 is
exceptionally reactive. This cyclization is also substantially
(11) (a) Kaye, S.; Fox, J. M.; Hicks, F. A.; Buchwald, S. L. AdV. Synth. Catal.
2001, 343, 789-794. (b) Walker, S. D.; Border, T. E.; Martinelli, J. R.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871-1876. (c) Strieter,
E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
13978-13980. (d) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald,
S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696. (e) Barder, T. E.;
Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 5096-5101.
(12) Nieto-Oberhuber, C.; Lo´pez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005,
127, 6178-6179.
(17) de Fremont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Organometallics
2005, 24, 2411-2418.
(18) Burrell, R. C.; Daoust, K. J.; Bradley, A. Z.; DiRico, K. J.; Johnson, R. P.
J. Am. Chem. Soc. 1996, 118, 4218-4219.
(19) (a) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776-
5777. (b) See also: Danheiser, R. L.; Gould, A. E.; Ferna´ndez de la Pradilla,
R.; Helgason, A. L. J. Org. Chem. 1994, 59, 5514-5515.
(20) Fort, D. M. et al. J. Org. Chem. 2000, 65, 6534-6539.
(21) Laird, D. W.; Poole, R.; Wikstro¨m, M.; van Altena, I. A. J. Nat. Prod.
2007, 70, 671-674.
(22) Brown, S.; Clarkson, S.; Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993,
34, 157-160.
(23) (a) Ohno, H.; Yamamoto, M.; Iuchi, M.; Tanaka, T. Angew. Chem., Int.
Ed. 2005, 44, 5103-5106. (b) Related cyclization of allenenes with aryl
halides: Ohno, H.; Miyaura, K.; Takeoka, Y.; Tanaka, T. Angew. Chem.,
Int. Ed. 2003, 42, 2647-2650.
(13) Nieto-Oberhuber, C.; Lo´pez, S.; Mun˜oz, M. P.; Jime´nez-Nu´n˜ez, E.; Bun˜uel,
E.; Ca´rdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2006, 11, 1694-
1702.
(14) Jime´nez-Nu´n˜ez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A.
M. Angew. Chem., Int. Ed. 2006, 45, 5451-5455.
(15) (a) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105-
1109. (b) Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J.
2007, 13, 1358-1373.
(16) Herrero-Go´mez, E.; Nieto-Oberhuber, C.; Lo´pez, S.; Benet-Buchholz, J.;
Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5455-5459.
9
270 J. AM. CHEM. SOC. VOL. 130, NO. 1, 2008