[CpRhCl2
] (4 mmol% )
In summary, we have developed a protocol for efficient
rhodium-catalyzed C(sp2)−H bond activation reactions of N-
(hetero)aryl-7-azaindoles and cross-coupling with α-carbonyl
sulfoxonium ylides. This protocol, which shows high
regioselectivity and broad functional group tolerance, provides a
new method for derivatizing 7-azaindoles and represents a novel
application of sulfoxonium ylides. Investigation of other metal-
catalyzed C(sp2)–H activation systems is currently underway in
our laboratories.
2
O
O
O
S
AgSbF6 (8 mmol% )
N
N
N
N
Ph
Ph
HFIP , K2CO3, 100 o
C
R
R
1
2a
4
O
O
O
O
N
N
N
N
N
N
N
N
Ph
Ph
Ph
Ph
OMe
78%
4e
4d
4b
78%
79%
4c
74%
O
O
O
O
Acknowledgments
N
N
N
N
N
N
N
N
Ph
Ph
Ph
Ph
We are grateful to the National Science Foundation of China for
financial support (NSFC-21472018). We are also thankful for the
School research fund of Changzhou Vocational Institute of
Engineering (11130300118013), Doctoral Research Startup Fund of
Changzhou Vocational Institute of Engineering for financial support.
O
CF3
Cl
F
O
4h
4i 74%
4g
74%
4f
73%
80%
O
O
N
N
N
N
2
Ph
Ph
6
References and notes
1
MeOOC
4k 75%
MeO
(a) C. Marminon, A. Pierré, B. Pfeiffer, V. Pérez, S. Léonce, A.
Joubert, C. Bailly, P. Renard, J. Hickman, M. Prudhomme, J. Med.
Chem. 2003, 46, 609; (b) P. M. Fresneda, S. Delgado, A. Francesch,
I. Manzanares, C. Cuevas, P. Molina, J. Med. Chem. 2006, 49, 1217;
(c) F. Popowycz, S. Routier, B. Joseph, J.-Y. Mérour, Tetrahedron
2007, 63, 1031; (d) J. J. Song, J. T. Reeves, F. Gallou, Z. Tan, N. K.
Yee, C. H. Senanayake, Chem. Soc. Rev. 2007, 36, 1120; (e) S. Hong,
J. Kim, J. H. Seo, K. H. Jung, S.-S. Hong, S. Hong, J. Med. Chem.
2012, 55, 5337; (f) A. Paczal, B. Balint, C. Weber, Z. B. Szabo, L.
Ondi, I. Theret, F. De Ceuninck, C. Bernard, A. Ktorza, F. Perron-
Sierra, A. Kotschy, J. Med. Chem. 2016, 59, 687.
(a) A. V. Smirnov, D. S. English, R. L. Rich, J. Lane, L. Teyton, A.
W. Schwabacher, S. Luo, R. W. Thornburg, J. W. Petrich, J. Phys.
Chem. B 1997, 101, 2758; (b) Q. G. Wu, L. Brancaleon, S. Wang, G.
Wu, Organometallics 1999, 18, 2553; (c) S.-F. Liu, Q. Wu, H. L.
Schmider, H. Aziz, N.-X. Hu, Z. Popović, S. Wang, J. Am. Chem.
Soc. 2000, 122, 3671; (d) J. Ashenhurst, G. Wu, S. Wang, J. Am.
Chem. Soc. 2000, 122, 2541.
b
4j
76%(5.26:1)
a Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol), [CpRhCl2]2 (4 mmol %),
AgSbF6 (8 mmol %), and K2CO3 (0.2 mmol) were gradually added to HFIP
(2 mL) with stirring under N2, and then the reaction mixture was heated at
100 °C for 12 h. Isolated yields are provided. b Ratio of regioisomers.
Scheme 2. Proposed reaction mechanism
[CpRhCl2]2
AgSbF6/K2CO3
+
O
2
N
N
Ph
N
N
[CpRh (SbF6)2]
or
3a
H
[CpRh CO3]
1a
3
4
A. Mullard, Nat. Rev. Drug Discovery 2012, 11, 91.
A. Zambon, I. Niculescu-Duvaz, D. Niculescu-Duvaz, R. Ma-rais, C.
J. Springer, Bioorg. Med. Chem. Lett. 2012, 22, 789.
Cp
H2CO3
N
N
N
Rh
-
Cp
N
Rh
SbF6
5
6
J. L. Henderson, S. M. McDermott, S. L. Buchwald, Org. Lett. 2010,
12, 4438.
(a) B. S. Lane, D. Sames, Org. Lett. 2004, 6, 2897. (b) P.
Kannaboina, K. Anilkumar, S. Aravinda, R. A. Vishwakarma, P. Das,
Org. Lett. 2013, 15, 5718.
P. Kannaboina, K. A. Kumar, P. Das, Org. Lett. 2016, 18, 900.
M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357.
G. Qian, X. Hong, B. Liu, H. Mao, B. Xu, Org. Lett. 2014, 16, 5294.
-
O
SbF6
I
Ph
IV
O
O
S
Ph
O
S
2a
O
O
7
8
9
Ph
N
N
Ph
N
Rh
Rh
Cp
Cp
N
-
SbF6
10 A. Mishra, T. -K. Vats, I. Deb, J. Org. Chem. 2016, 81, 6525.
11 (a) Li, S.-S.; Wang, C.-Q.; Lin, H.; Zhang, X.-M.; Dong, L. Org. Lett.
2015, 17, 3018. (b) Liu, B.; Wang, X.; Ge, Z.; Li, R. Org. Biomol.
Chem. 2016, 14, 2944.
-
SbF6
III
DMSO
II
On the basis of previous reports,17 we propose the
mechanism outlined in Scheme 2 for the reaction between 1-
phenyl-7-azaindole (1a) and α-carbonyl sulfoxonium ylides 2a.
The catalytic cycle begins with generation of the active catalyst,
[CpRh(SbF6)2] or [CpRhCO3], by reaction of [CpRhCl2]2 with
AgSbF6/K2CO3. Then [CpRh(SbF6)2] or [CpRhCO3], activates
the C(sp2)−H bond of 1a to generate intermediate I, and
subsequent coordination with 2a leads to the formation of II. In
the C−H activation reaction, the nitrogen atom of 7-azaindole
moiety complexes with metal Rh, acting as a directing group. α-
Elimination of DMSO produces key intermediate carbene species
III, which undergoes migratory insertion to give IV. Finally, in
the presence of H2CO3, this intermediate IV liberates cross-
coupling product 3a upon protodemetallation, and release of the
rhodium catalyst completes the catalytic cycle.
12 S.-S. Li, C.-Q. Wang, H. Lin, X.-M. Zhang, L. Dong, Org. Biomol.
Chem. 2016, 14, 229.
13 (a) I. K. Mangion, I. K. Nwamba, M. Shevlin, M. A. Huffman, Org.
Lett. 2009, 11, 3566; (b) I. K. Mangion, M. Weisel, Tetrahedron Lett.
2010, 51, 5490; (c) I. K. Mangion, R. T. Ruck, N. Nivera, M. A.
Huffmanm, M. Shevlin, Org. Lett. 2011, 13, 5480; (d) C. Molinaro,
P. G. Bulger, E. E. Lee, B. Kosjek, S. Lau, D. Gauvreau, M. E.
Howard, D. J. Wallace, P. D. O’Shea, J. Org. Chem. 2012, 77, 2299;
(e) N. Wishart, D. F. Bonafoux, K. E. Frank, A. D. Hobson, D. B.
Konopacki,G. Y. Martinez, L. Wang, US 21030072470 A1; (f) A. M.
Phelps, V. S. Chan, J. G. Napolitano, S. W. Krabbe, J. M. Schomaker,
S. Shekhar, J. Org. Chem. 2016, 81, 4158.
14 (a) D.-Y. Wang, S.-H. Guo, G.-F. Pan, X.-Q. Zhu, X.-Q. Zhu, Y.-R.
Gao, Y.-Q. Wang. Org. Lett. 2018, 20, 1794; (b) X.-L. Zhang, G.-F.
Pan, X.-Q. Zhu, R.-L. Guo, Y.-R. Gao, Y.-Q. Wang. Org. Lett. 2019,
21, 2731; (c) X.-Q. Kong, B. Xu. Org. Lett. 2018, 20, 4495; (d) X.-Q.
Kong,
B.
Xu.
Tetrahedron
Lett.
2019,