and their further diversification to novel structural motifs
including spiroindane frameworks.
Our study began with enantioselective crotylation6 of
2-bromobenzaldehyde 5 using silane (R)-2 to afford the syn-
homoallylic ether 6 (dr >20:1, Scheme 1). Heck cyclization7
Table 1. Additional Bicyclic Scaffolds
Scheme 1. Preparation of Alkylidene Indane Scaffolds
of 6 (cat. Pd(OAc)2, Et3N, 120 °C) cleanly afforded alky-
lidene indane 7 (82%).8 The olefin geometry of 7 was
assigned through NOE analysis (inset). Alternatively, per-
forming the Heck cyclization at a lower temperature (80 °C)
afforded 7 and trisubstituted indane 8 in 35 and 38% yields,
respectively. NOE measurements (inset) indicated that the
benzylic vinyl group of 8 was established trans to the
adjacent methyl group. Subjection of the presumed kinetic
product 8 to the Heck reaction conditions (Pd(OAc)2, Et3N,
120 °C) led to complete isomerization to thermodynamic
product 7 where the olefin is conjugated with the aromatic ring.
Table 1 illustrates six bicyclic scaffolds prepared using
the diastereo- and enantioselective crotylation-Heck reaction
sequence. Various scaffolds bearing both electron-rich and
-poor aryl rings (Table 1, entries 2 and 3) and scaffolds with
functional handles for further diversification including hy-
droxyl and carbamate groups (Table 1, entries 1 and 4) were
prepared using the two-step sequence. Crotylation of acetal
199 yielded homoallylic ether 20 which was subjected to
Heck cyclization to afford tetrahydronaphthalene (21).
Finally, diethyl acetal 228 was efficiently converted to
crotylation product 23 en route to the alkylidene oxepine
derivative (24).10
a Isolated yield. b Reaction conditions: MeCO2NH2 (1.1 equiv), BF3‚Et2O
(1.0 equiv), 2 (1.1 equiv), CH2Cl2, -78 to -30 °C. c TMSOTf (1.0 equiv),
TMSOMe (1.1 equiv), 2 (1.1 equiv), CH2Cl2, -78 to -30 °C. d TMSOTf
(1.0 equiv), 2 (1.1 equiv), CH2Cl2, -78 to 30 °C. e Pd(OAc)2 (10 mol %),
Et3N (2 equiv), PPh3 (40 mol %), DMF, 120 °C, 2 h.
ization chemistry. As part of our studies, we considered
diazotization of the â,γ-unsaturated ester moiety to a vinyl
diazoester. The rich chemistry of diazo compounds provides
access to numerous C-C bond forming reactions to generate
a variety of functionalized scaffolds11 and renders them
reactive intermediates suitable for DOS.12 In the event,
diazotization of 13 with sulfonyl azide 2613 and DBU led to
clean formation of the stable vinyl diazoester 27 (Scheme
2). In order to evaluate intermolecular cyclopropanation, 27
was treated with cyclopentadiene in the presence of Rh2-
With access to a number of alkylidene indane and related
scaffolds, we turned our attention toward their functional-
(5) (a) Paterson, I.; Donghi, M.; Gerlach, K. Angew. Chem., Int. Ed.
2000, 39, 3315. (b) Bode, J. W.; Fraefel, N.; Muri, D.; Carreira, E. M.
Angew. Chem., Int. Ed. 2001, 40, 2082. (c) Smith, A. B., III; Walsh, S. P.;
Frohn, M.; Duffey, M. O. Org. Lett. 2005, 7, 139. (d) Shang, S.; Iwadare,
H.; Macks, D. E.; Ambrosini, L. M.; Tan, D. L. Org. Lett. 2007, 9, 1895.
(6) (a) Panek, J. S.; Xu, F. J. Am. Chem. Soc. 1995, 117, 10587. (b)
Jain, N. F.; Cirillo, P. F.; Pelletier, R.; Panek, J. S. Tetrahedron Lett. 1995,
36, 8727. (c) Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc.
1996, 118, 12475. (d) Beresis, R. T.; Solomon, J. S.; Yang, M. G.; Jain, N.
F.; Panek, J. S. Org. Synth. 1997, 75, 78.
(11) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds; Wiley-Inter-
science: New York, 1998; pp 112-162. (b) Mass, G. Topics in Current
Chemistry; Springer-Verlag: New York; 1987; Vol. 137, pp 75-254.
(12) For application of diazo compounds in DOS, see: (a) Oguri, H.;
Schreiber, S. L. Org. Lett. 2005, 7, 47. (b) Wyatt, E. E.; Fergus, S.;
Galloway, W. R. J. D.; Bender, A.; Fox, D. J.; Plowright, A. T.; Jessiman,
A. S.; Welch, M.; Spring, D. R. Chem. Commun. 2006, 3296. (c) Ni, A.;
France, J. E.; Davies, H. M. L. J. Org. Chem. 2006, 71, 5594.
(13) Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth.
Commun. 1987, 17, 1709.
(7) Link, J. T. Org. React. 2002, 60, 157.
(8) See Supporting Information for complete experimental details.
(9) Garcia-Ruano, J. L.; Aleman, J.; Aranda, M. T.; Fernandez-Ibanez,
M. A.; Rodriguez-Fernandez, M. M.; Maestro, M. C. Tetrahedron 2004,
60, 10067.
(10) Martins, A.; Marquardt, U.; Kasrvi, N.; Alrerico, D.; Lautens, M.
J. Org. Chem. 2006, 71, 4937.
5204
Org. Lett., Vol. 9, No. 25, 2007