10.1002/anie.202014775
Angewandte Chemie International Edition
COMMUNICATION
the stage to the reaction with [RhCl(COD)]2 in the presence of
KHMDS to afford the desired carbene-metal complexes 8a,d,w,x
as air stable yellow solids. Compounds 8w and 8x were also
crystallized and their structures in the solid state are depicted in
Scheme 4 and the Supporting Information.
Rhodium dicarbonyl complexes 9a and 9x were synthesized by
reaction of precursors 8a and 8x with CO, respectively, and their
CO stretching vibrations (υav = 2029 cm-1, 9a and υav = 2032 cm-1,
9x) compared with that of 1-alkyl analogues (υav = 2027 cm-1).[26]
This analysis suggests that the introduction of the dialkylamino
group at N(1) slightly reduces the donor ability exhibited by the
original 1,2,3-triazol-4-ylidenes probably due to the inductive
effect of a dialkylamino moiety, which is not conjugated with the
ring.[27] Both carbene ligands remain anyway stronger donors than
conventional NHCs (υav = 2039-2041 cm-1).[28]
Scheme 4. Synthesis of Rh complexes 8a,d,w,x via decarboxylative metalation,
evaluation of the donor properties of the new ligands and molecular structure of
8x. Anisotropic displacements shown at 50% probability level and H atoms
removed for clarity.[16] Reaction conditions: a) MeOTf (1.2 equiv.), DCM, 8h, 0°C
→ r.t.; b) (LiOH 3.0 equiv.), THF/H2O/MeOH (1:1:1), 1h, 60°C, 7a, 89%; 7d,
89%;7w, 71%;7x, 61%, (two steps yield); c) KHMDS (1.2 equiv.), [RhCl(COD)]2
(0.5 equiv.), THF, 0°C → r.t., 8a, 60%, 8d, 60%; 8w, 70%; 8x, 81%; d) CO,
DCM, 20 min., r.t., 9a, 75%, 9x, 72%.
In conclusion, diazomethyl radicals can be efficiently generated
under photochemical conditions from α-diazosulfonium triflates,
whose synthesis is described along this paper. Addition of these
species to hydrazones followed by intramolecular cyclization
affords 1-(dialkylamino)-1,2,3-triazoles in moderate to excellent
yields. Finally, these heterocyclic compounds were further
elaborated into mesoionic carbene ligands having an
unprecedented dialkylamino rest at position 1. The development
of additional synthetic applications of sulfonium salts is an active
area of investigation in our laboratory and further progress on the
topic will be reported in due course.
Acknowledgements
Support from the European Research Council (ERC CoG
771295) and the DFG (INST 186/1237-1 and INST 186/1324-1)
is gratefully acknowledged. Open access funding enabled and
organized by Projekt DEAL.
Keywords: diazo compounds • sulfonium salts • photoredox
catalysis • mesoionic carbenes • 1,2,3-triazoles
13346−13351; c) M. H. Aukland, F. J. T. Talbot. J. A. Fernández-Salas,
M. Ball, A. P. Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2018, 57, 9785-
9789; d) D. Uno, H. Minami, S. Otsuka, K. Nogi, H. Yorimitsu, Chem.
Asian J. 2018, 13, 2397−2400; e) Z.-Y. Tian, S.-M. Wang, S.-J. Jia, H.-
X. Song, C.-P. Zhang, Org. Lett. 2017, 19, 5454−5457; f) S. M. Wang, X.
Y. Wang, H. L. Qin, C. P. Zhang, Chem. Eur. J. 2016, 22, 6542−6546; g)
X.-Y. Wang, H.-X. Song, S.-M. Wang, J. Yang, H.-L. Qin, X. Jiang, C.-P.
Zhang, Tetrahedron, 2016, 72, 7606−7612; h) P. Cowper, Y. Jin, M. D.
Turton, G. Kociok-Köhn, S. E. Lewis, Angew. Chem. Int. Ed. 2016, 55,
2564−2568; i) S.-M. Wang, H.-X. Song, X.-Y. Wang, N. Liu, H.-L. Qin,
C.-P. Zhang, Chem. Commun. 2016, 52, 11893−11896; j) D. Vasu, H.
Yorimitsu, A. Osuka, Synthesis 2015, 47, 3286−3291; k) D. Vasu, H.
Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 2015, 54, 7162−7166; l) S.
Zhang, D. Marshall, L. S. Liebeskind, J. Org. Chem. 1999, 64,
2796−2804; m) J. Srogl, G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc.
1997, 119,12376–12377.
[1]
a) D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019,
119, 8701−8780; b) I. Fernández, N. Khiar Arylsulfonium Salts and
Derivatives, in Science of Synthesis, Vol 31a (Ed. C. A. Ramsden,
Thieme, Stuttgart, 2007, pp. 1001-1014.
[2]
[3]
S. I. Kozhushkov, M. Alcarazo, Eur. J. Inorg. Chem. 2020, 26,
2486−2500.
R. Oost, J. D. Neuhaus, J. Merad, N. Maulide, Sulfur Ylides in Organic
Synthesis and Transition Metal Catalysis in Modern Ylide Chemistry.
Structure and Bonding (Ed.: V. Gessner), Vol 177, Springer, Cham 2017.
a) X.-X. Ming, Z.-Y. Tian, C.-P. Zhang, Chem. Asian J. 2019, 14,
3370−3379; b) J.-N. Zhao, M. Kayumov, D.-Y. Wang, A. Zhang, Org. Lett.
2019, 21, 7303−7306; c) K. Sander, E. Galante, T. Gendron, E. Yiannaki,
N. Patel, T. L. Kalber, A. Badar, M. Robson, S. P. Johnson, F. Bauer, S.
Mairinger, J. Stanek, T. Wanek, C. Kuntner, T. Kottke, L. Weizel, D.
Dickens, K. Erlandsson, B. F. Hutton, M. F. Lythgoe, H. Stark, O. Langer,
M. Koepp, E. Årstad, J. Med. Chem. 2015, 58, 6058−6080; d) L. Mu, C.
R. Fischer, J. P. Holland, J. Becaud, P. A. Schubiger, R. Schibli, S. M.
Ametamey, K. Graham, T. Stellfeld, L. M. Dinkelborg, L. Lehmann, Eur.
J. Org. Chem. 2012, 889–892.
[4]
[6]
[7]
For seminal work see: a) T. J. Van Bergen, D. M. Hedstrand, W. H.
Kruizinga, R. M. Kellogg, J. Org. Chem. 1979, 44, 4953−4962; b) D. M.
Hedstrand, W. H. Kruizinga, R. M. Kellogg, Tetrahedron Lett. 1978, 19,
1255−1258. For recent reviews see: c) A. Péter, G. J. P. Perry, D. J.
Procter, Adv. Synth. Catal. 2020, 362, 2135−2142; d) S. Otsuka, K. Nogi,
H. Yorimitsu, Top. Curr. Chem. 2018, 376, 199-237, and ref. 1a.
a) J. Li, J. Chen, R. Sang, W.-S. Ham, M. B. Plutschack, F. Berger, S.
Chabbra, A. Schnegg, C. Genicot, T. Ritter, Nat. Chem. 2020, 12, 56−62;
b) M. H. Aukland, M. Šiaučiulis, A. West, G. J. P. Perry, D. J. Procter,
Nat. Catal. 2020, 3, 163−169; c) R. Sang, S. E. Korkis, W. Su, F. Ye, P.
S. Engl, F. Berger, T. Ritter, Angew. Chem. Int. Ed. 2019, 58,
[5]
a) K. Kafuta, A. Korzun, M. Böhm, C. Golz, M. Alcarazo, Angew. Chem.
Int. Ed. 2020, 59, 1950−1955; b) P. S. Engl, A. P. Häring, F. Berger, G.
Berger, A. Pérez-Bitrián, T. Ritter, J. Am. Chem. Soc. 2019, 141,
4
This article is protected by copyright. All rights reserved.