3652
N. Griebenow et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3648–3653
Table 1 (continued)
b
Compounda
Scaffold
Isomer
R
IC50 (nM)
HLMc (%)
Sterol biosynthesisd (%)
3 mg/kg po 1 mg/kg po
16
C
C
—
—
OH
223
260
nd
37
nd
nd
O
OH
T-91485
nd
nd
N
*
a
For experimental data of compounds 13a–d. 14d, 15d and 16d see Ref. 10.
Values are means of three experiments. For a detailed description of the biochemical assay see Ref. 17.
Human liver microsomal stability, % compound remaining after 60 min.
b
c
d
e
Inhibition of sterol biosynthesis in % (in vivo). For details see Ref. 19.
1H NMR spectra indicated that 13a and 13d as well as 13b and 13c are pairs of enantiomers.
O
O
O
O
References and notes
1. (a) Carpender, K. I.; Taylor, S. E.; Ballantine, J. A.; Fussell, B.; Halliwell, B.;
Mitchinson, M. J. Biochim. Biophys. Acta 1993, 1167, 121; (b) Brown, A. J.;
Mander, E. L.; Gelissen, I. C.; Kritharides, L.; Dean, R. T.; Jessup, W. J. Lipid Res.
2000, 41, 226; (c) Kourounakis, A. P.; Charitos, C.; Rekka, E. A.; Kourounakis, P.
N. J. Med. Chem. 2008, 51, 5861.
2. (a) Burnett, J. Curr. Opin. Investig. Drugs. 2006, 7, 850; (b) Seiki, S.; Frishman, W.
H. Cardiol. Rev. 2009, 17, 70; (c) Elsayed, R. K.; Evans, J. D. Expert Opin. Emerging
Drugs 2008, 13, 309.
3. (a) Miki, T.; Kori, M.; Fujishima, A.; Mabuchi, H.; Tozawa, R.; Nakamura, M.;
Sugiyama, Y.; Yukimasa, H. Bioorg. Med. Chem. 2002, 10, 385; (b) Miki, T.; Kori,
M.; Mabuchi, H.; Banno, H.; Tozawa, R.; Nakamura, M.; Itokawa, S.; Sugiyama,
Y.; Yukimasa, H. Bioorg. Med. Chem. 2002, 10, 401.
4. (a) Pevarello, P.; Amici, R.; Brasca, M. G.; Villa, M.; Varasi, M. Targets in
Heterocycl. Syst. 1999, 3, 301; (b) Mogensen, J. P.; Roberts, S. M.; Bowler, A. N.;
Thomsen, C.; Knutsen, L. J. S. Bioorg. Med. Chem. Lett. 1998, 8, 1767.
5. (a) Nobeli, I.; Price, S. L.; Lommerse, J. P. M.; Taylor, R. J. Comput. Chem. 1997, 18,
2060; (b) Böhm, H.-J.; Klebe, G.; Brode, S.; Hesse, U. Chem. Eur. J. 1996, 2, 1509;
(c) Liu, G.; Xin, Z.; Pei, Z.; Hajduk, P. J.; Abad-Zapatero, C.; Hutchins, C. W.; Zhao,
H.; Lubben, T. H.; Ballaron, S. J.; Haasch, D. L.; Kaszubska, W.; Rondinone, C. M.;
Trevillyan, J. M.; Jirousek, M. R. J. Med. Chem. 2003, 46, 4232; (d) Sharp, S. Y.;
Prodromou, C.; Boxall, K.; Powers, M. V.; Holmes, J. L.; Box, G.; Matthews, T. P.;
Cheung, K.-M. J.; Kalusa, A.; James, K.; Hayes, A.; Hardcastle, A.; Dymock, B.;
Brough, P. A.; Barril, X.; Cansfield, J. E.; Wright, L.; Surgenor, A.; Foloppe, N.;
Hubbard, R. E.; Aherne, W.; Pearl, L.; Jones, K.; McDonald, E.; Raynaud, F.;
Eccles, S.; Drysdale, M.; Workman, P. Mol. Cancer Ther. 2007, 6, 1198.
6. (a) Flexible structural alignment was carried out using the program Surflex Sim
provided with SYBYL-X 1.2 (Tripos Int., St. Louis, MO, USA).; (b) Jain, A. N. J.
Comput.-Aided Mol. Des. 2000, 14, 199; Structures were optimized prior to
alignment using the MMFF94s force field, supplied with SYBYL-X 1.2, see (c)
Halgren, T. J. Comp. Chem. 1999, 20, 720.
O
N
O
N
O
O
a,b
Cl
Cl
OH
R
13d
14d-16d
O
O
Scheme 6. Reagents and conditions: (a) Ethyl piperidine-4-carboxylate or ethyl
piperidin-4-ylacetate or (3R)-pyrrolidin-3-ol, PyBOP, DIEA, rt, 16 h. (b) In case of
amines bearing an ester group: dioxane, water, concn aq HCl, 60 °C, 16 h.
analogy to the stereoselective inhibitory potencies of 4,1-ben-
zoxazepine derivatives (Table 1).3b
The stereoisomer 13d was elaborated further at the carboxylic
acid to the amides 14d–16d as outlined in Scheme 6. Because of
the previously established structure activity relationship,18 we
considered only small variations at the carboxylic acid. Amide
formation was accomplished under standard coupling conditions
(PyBOP, DIEA).
Surprisingly, all the amides 14d–16d showed a higher in vitro
potency compared to lapaquistat acetate (Table 1). Compounds
13d, 15d and 16d were progressed further to in vivo animal stud-
ies. Inhibition of hepatic cholesterol biosynthesis was investigated
in NMRI-mice.
7. Protein Data Bank, Research Collaboratory for Structural Bioinformatics,
code 1EZF. See: Pandit, J.; Danley, D. E.; Schulte, G. K.; Mazzalupo, S. J. Biol.
Chem. 2000, 275, 30610.
8. Docking studies were carried out employing the Schrödinger suite of programs.
The X-ray crystal structure 1EZF was used as a glide receptor grid after protein
preparation. The water forming a bridge to ASN 215 was included into the
receptor grid. Ligands were optimized before docking via the ligprep routine.
Docking was carried out in SP and XP mode with similar results. Figures were
prepared with PyMol.; (b) Glide, version 5.6, Schrödinger, LLC, New York, NY,
2010.; (c) LigPrep, version 2.4, Schrödinger, LLC, New York, NY, 2010.; (d) The
PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC.
9. (a) Moore, J. E.; Davies, M. W.; Goodenough, K. M.; Wybrow, R. A. J.; York, M.;
Johnson, C. N.; Harrity, J. P. A. Tetrahedron 2005, 61, 6707; (b) Moore, J. E.;
Goodenough, K. M.; Spinks, D.; Harrity, J. P. A. Synlett 2002, 2071.
10. For experimental details and characterization of the compounds see: (a)
Griebenow, N.; Buchmueller, A.; Kolkhof, P.; Bischoff, H. PCT Int. Appl., WO
2008003424, 2008. (b) Griebenow, N.; Buchmueller, A.; Kolkhof, P.; Bischoff, H.
US 2010016299, 2010.
After po administration of 3 mg/kg, the compounds 13d, 15d
and 16d showed a reduction in sterol biosynthesis of 58%, 80%
and 79% respectively (Table 1).19
The best match of in vitro potency and microsomal stability
combined with a pronounced reduction in sterol biosynthesis
was displayed by compound 16d.20 Thus 16d, was investigated at
lower dosage in NMRI-mice (1 mg/ kg po) showing a reduction in
sterol biosynthesis of 71%.
In conclusion, we have identified a novel series of substituted
benzoxepino-oxazoles which have a superior profile compared to
lapaquistat acetate (TAK-475) and its active metabolite T-91485,
regarding in vitro potency and microsomal stability as well as
reduction of sterol biosynthesis. Further pharmacological data of
16d will be reported in due course.
11. The geometry of the isoxazole 1 was reasoned from the subsequent synthesis
steps providing the 4,1-benzoxazepine scaffold. The regioisomeric 3-
(dimethoxymethyl)-4-isopropyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)-1,2-oxazole will not yield such a cyclization pruduct.
12. Generation of nitrile oxides from N-hydroxyimidoyl chlorides by slow addition
of triethylamine, where the stationary concentration of nitrile oxide is kept low
to avoid dimerization: Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565.
13. Yields were low due to dimerization of the formed nitrile oxide and proto-
deborylation of the product.
14. For comprehensive reviews, see: (a) Suzuki, A. Pure Appl. Chem. 1994, 66, 213;
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (c) Bellina, F.; Carpita, A.;
Rossi, R. Synthesis 2004, 15, 2419.
Acknowledgements
We thank our Analytical Chemistry colleagues for structure and
purity determination. In addition, we are grateful to Dr. Klemens
Lustig for providing microsomal stability data, and Dr. Stuart Ince
and Dr. Hartmut Schirok for critical reading of the manuscript
and helpful discussions.
15. Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
16. Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. 1987, 26, 1167.