natural products, there are a large number of total syntheses
but relatively few enantioselective syntheses.26 Especially rare
are syntheses of angular triquinine natural products that
utilize enantioselective catalysis to establish the absolute
stereochemistry.26a,b Integral to the challenge of an enantio-
selective synthesis of the angular triquinanes is the asym-
metric installation of the central, quaternary carbon.27
The Pauson-Khand reaction is a multicomponent reaction
that has found particular utility for the stereocontrolled
construction of triquinane natural products.28 In seminal
work, Schore utilized an intramolecular, diastereoselective
Pauson-Khand reaction as the key step for the synthesis of
pentalenene.13 In the only nonracemic synthesis of pental-
enene, Hua utilized a Pauson-Khand reaction to prepare 7,7-
dimethylbicyclo[3.3.0]-2-octen-3-one, which was obtained
in enantiomerically enriched form via kinetic resolution.10
More recently, Krafft utilized a tandem Pauson-Khand/aldol
sequence to construct an angular triquinine skeleton,29 and
Pericas utilized chiral auxiliaries to control the asymmetry
of the Pauson-Khand reaction in the synthesis of (+)-15-
nor-methylpentalenene.30 The angular triquinane framework
has also been constructed by Malacria and co-workers with
a Conia-ene/intramolecular Pauson-Khand sequence,31 and
by Serratosa and co-workers, who utilized an intermolecular
Pauson-Khand reaction.32
Recently, our group described intermolecular Pauson-
Khand reactions of chiral cyclopropenes33assubstrates that
are readily available in enantiomerically enriched form.34
Because cyclopropenes are exceptionally reactive in inter-
molecular Pauson-Khand reactions,33 we envisioned that an
intramolecular variant33e of the reaction could be used to set
the quaternary center of pentalenene. In a retrosynthetic
analysis (Scheme 1), it was reasoned that 1 could be derived
Scheme 1. Retrosynthetic Analysis of (-)-Pentalenene
from tricycle 2. The quaternary center of 2 could be
established from an intramolecular Pauson-Khand reaction
(25) Burnell has reported a highly enantioselective synthesis of (4R,5S)-
4-hydroxy-4,7,9,9-tetramethylspiro[4,5]dec-7-en-1-one using Baker’s yeast
reduction as the key step: Zhu, Y.-Y.; Burnell, D. J. Tetrahedron:
Asymmetry 1996, 7, 3295. Burnell had previously reported the use of a
similar derivative [7-ethyl-4-hydroxy-4,9,9-trimethylspiro[4,5]dec-7-en-1-
one] in the synthesis of racemic pentalenene.16
Scheme 2. Enantioselective Cyclopropenation with Corey’s
Rh2(OAc)(R,R-DPTI)3 Catalyst
(26) Nonracemic total syntheses have been described for the angular
triquinines (-)-pentalenolactone,26c,d,j, (-)-isocomene,26g (+)-silphenene,26a
(-)-retigeranic acid,26e,k,l,m (-)-silphiperfol-6-ene,26b,h,i,q,n,o (-)-methyl
cantabradienate,26i and (-)-subergorgic acid.26f For total or formal syntheses
that use nonenzymatic enantioselective catalysis to establish the absolute
stereochemistry, see: (a) Hu, Q.-Y.; Zhou, G.; Corey, E. J. J. Am. Chem.
Soc. 2004, 126, 13708. (b) Demuth, M.; Hinsken, W. HelV. Chim. Acta
1988, 71, 569. For syntheses in which absolute stereochemistry is established
via enzymatic desymmetrization or resolution: (c) Herrmann, E.; Gais,
H.-J.; Rosenstock, B.; Raabe, G.; Lindner, H. J. Eur. J. Org. Chem. 1998,
275. (d) Mori, K.; Tsuji, M. Tetrahedron. 1988, 44, 2835. (e) Wender, P.
A.; Singh, S. K. Tetrahedron Lett. 1990, 31, 2517. (f) Paquette, L. A.;
Meister, P. G.; Friedrich, D.; Sauer, D. R. J. Am. Chem. Soc. 1993, 115,
49. For syntheses in which chiral auxilaries are used to establish absolute
stereochemistry: (g) Rawal, V. H.; Eschbach, A.; Dufour, C.; Iwasa, S.
Pure Appl. Chem. 1996, 68, 675. (h) Meyers, A. I.; Lefker, B. A.
Tetrahedron 1987, 43, 5663. (i) Vo, N. H.; Snider, B. B. J. Org. Chem.
1994, 59, 5419. For syntheses that originate from enantiomerically enriched
natural products: (j) Testero, S. A.; Spanevello, R. A. Org. Lett. 2006, 8,
3793. (k) Llera, J. M.; Fraser-Reid, B. J. Org. Chem. 1989, 54, 5544. (l)
Hudlicky, T.; Fleming, A.; Radesca, L. J. Am. Chem. Soc. 1989, 111, 6691.
(m) Wright, J.; Drtina, G. J.; Roberts, R. A.; Paquette, L. A. J. Am. Chem.
Soc. 1988, 110, 5806. (n) Paquette, L. A.; Roberts, R. A.; Drtina, G. J. J.
Am. Chem. Soc. 1984, 106, 6690. (o) Sha, C.-K.; Santosh, K. C.; Lih,
S.-H. J. Org. Chem. 1998, 63, 2699.
of cyclopropenyne 3, which itself could arise from an
enantioselective cyclopropenation of diyne 4. The successful
execution of this strategy is reported herein for the synthesis
of (-)-1, the unnatural enantiomer of the natural product
pentalenene.35
(32) Montan˜a, A.-M.; Moyano, A.; Pericas, M. A.; Serratosa, F.
Tetrahedron 1985, 41, 5995.
(33) For examples of intermolecular Pauson-Khand reactions of cyclo-
propenes: (a) Pallerla, M. K.; Fox, J. M. Org. Lett. 2005, 7, 3593. (b)
Kireev, S. L.; Smit, V. A.; Ugrak, B. I.; Nefedov, O. M. Bull. Acad. Sci
USSR (Engl. Transl.) 1991, 2240. (c) Marchueta, I.; Verdaguer, X.; Moyano,
A.; Perica`s, M. A.; Riera, A. Org. Lett. 2001, 3, 3193. (d) Witulski, B.;
Go¨ssman, M. Synlett 2000, 1793. For an example of an intermolecular
Pauson-Khand reaction of a cyclopropene derivative: (e) Nu¨ske, H.; Bra¨se,
S.; de Meijere, A. Synlett 2000, 1467.
(27) Reviews for the enantioselective introduction of quaternary car-
bons: (a) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (b) Corey, E. J.;
Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388. (c) Fuji, K. Chem.
ReV. 1993, 93, 2037. (d) Christoffers, J.; Baro, A. AdV. Synth. Catal. 2005,
347, 1473.
(28) For the seminal utilization of the Pauson-Khand reaction in
triquinane synthesis, see: (a) Magnus, P.; Exon, C.; Albaugh-Robertson,
P. Tetrahedron 1985, 41, 5861. Selected reviews of the Pauson-Khand
reaction: (b) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263.
(c) Schore, N. E. Org. React. 1991, 40, 1. (d) Schore, N. E. Chem. ReV.
1988, 88, 1081. (e) Stru¨bing, D.; Beller, M. Top. Organomet. Chem. 2006,
18, 165. (f) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez,
G.; Perez-Castells, J. Chem. Soc. ReV. 2004, 33, 32.
(34) (a) Lou, Y.; Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey,
E. J. J. Am. Chem. Soc. 2004, 126, 8916. (b) Lou, Y.; Remarchuk, T. P.;
Corey, E. J. J. Am. Chem. Soc. 2005, 127, 14223. (c) Weatherhead-Kloster,
R. A.; Corey, E. J. Org. Lett. 2006, 8, 171. (d) Doyle, M. P.; Protopopova,
M.; Muller, P.; Ene, D.; Shapiro, E. A. J. Am. Chem. Soc. 1994, 116, 8492.
(e) Muller, P.; Imogai, H. Tetrahedron: Asymmetry 1998, 9, 4419. (f) Davies,
H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. (g) Liao, L. A.; Zhang, F.;
Dmitrenko, O.; Bach, R. D.; Fox, J. M. J. Am. Chem. Soc. 2004, 126, 4490.
(h) Liao, L. A.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M. Tetrahedron
2004, 60, 1803.
(29) Krafft, M. E.; Kyne, G. M.; Hirosawa, C.; Schmidt, P.; Abboud,
K. A.; L’Helias, N. Tetrahedron 2006, 62, 11782.
(30) Tormo, J.; Moyano, A.; Perica´s, M. A.; Riera, A. J. Org. Chem.
1997, 62, 4851.
(31) Renaud, J.-L.; Aubert, C.; Malacria, M. Tetrahedron 1999, 55, 5113.
(35) (S,S)-Rh2(OAc)(DPTI)3 would give rise to natural (+)-pentalenene.
We synthesized the unnatural enantiomer because we had (R,R)-Rh2(OAc)-
(DPTI)3 in hand from another project.
5626
Org. Lett., Vol. 9, No. 26, 2007