Angewandte
Chemie
have a rich synthetic and catalytic[4,5] potential that remains to
be tapped.[24]
[10] To be published. Crystal data of 2a: C33H52ClN5Si2Zr, ortho-
rhombic, space group Pna21, a = 10.2241(15), b = 35.855(5), c =
9.8844(15) , V= 3623.5(9) 3, Z = 4, m = 0.472 mmÀ1, F000
=
1480.
Received: August 27, 2007
[11] Crystal data of 3: C38H56N6Si2Zr, monoclinic, space group P21/c,
a = 10.2312(9), b = 12.4990(11), c = 30.880(3) , b = 97.632(2)8,
V= 3913.9(6) 3, Z = 4, m = 0.376 mmÀ1, F000 = 1576. Reflections
measured: 75589, independent: 8979 [Rint = 0.098], index ranges
À13 % h % 13, À16 % k % 0, À40 % l % 12, q range 1.8 to 28.58.
Final R values [I > 2s(I)]: R1 = 0.0486, wR2 = 0.1142, GooF =
1.033. 4: C38H60N6Si2Zr, monoclinic, space group Cc, racemically
twinned (refined fractions of the two crystallites 0.945 and
0.055), a = 11.7568(8), b = 18.3226(12), c = 18.9636(13) , b =
Published online: October 8, 2007
Keywords: density functional calculations · hydrazides ·
.
nitrogen · X-ray diffraction · zirconium
[2] For early reviews related to the topic, see: a) W. A. Nugent, B. L.
J. M. Mayer, Metal–Ligand Multiple Bonds, Wiley, New York,
[3] Theoretical analysis of the bonding of hydrazido ligands: a) S.
Kahlal, J. Saillard, J. Hamon, C. Manzur, D. Carrillo, J. Chem.
[4] Hydrohydrazination: a) J. S. Johnson, R. G. Bergmann, J. Am.
[5] Hydrazination as a key step in indole syntheses: a) A. Tillack, H.
[6] Ti hydrazides: a) N. Wiberg, H.-W. Haring, G. Huttner, P.
McInnes, P. Mountford, G. I. Nikonov, D. Swallow, D. J. Watkin,
91.6860(10)8, V= 4083.3(5) 3, Z = 4, m = 0.361 mmÀ1, F000
=
1592. Reflections measured: 100972, independent: 13059
[Rint = 0.0379], index ranges À17 % h % 17, À27 % k % 27, À26 %
l % 28,
q range 2.1 to 32.08. Final R values [I > 2s(I)]:
R1 = 0.0350,
wR2 = 0.0825,
GooF = 1.183.
5:
¯
C66H102N10SSi4Zr2·0.5C7H8, triclinic, space group P1, a =
13.6391(3), b = 16.3628(3), c = 18.3324(3) , a = 77.4440(11),
b = 89.7670(12), g = 67.5910(11)8, V= 3677.80(12) 3, Z = 2,
m = 0.423mm À1, F000 = 1490. Reflections measured: 69600, inde-
pendent: 15625 [Rint = 0.0850], index ranges À17 % h % 17,
À20 % k % 20, 0 % l % 23, q range 1.6 to 26.7 8. Final R values
[I > 2s(I)]: R1 = 0.0439, wR2 = 0.0948, GooF = 1.019. 6:
¯
C66H102N10SeSi4Zr2·0.5C7H8, triclinic, space group P1, a =
13.6511(6), b = 16.4735(7), c = 18.3587(8) , a = 77.1450(10),
b = 89.3640(10), g = 67.4010(10)8, V= 3703.3(3) 3, Z = 2, m =
0.883mm À1, F000 = 1526. Reflections measured: 93395, inde-
pendent: 24353 [Rint = 0.0424], index ranges À20 % h % 20,
À23 % k % 24, 0 % l % 27, q range 1.9 to 32.28. Final R values
[I > 2s(I)]: R1 = 0.0342, wR2 = 0.0806, GooF = 1.059. Intensity
data were collected at low temperature (3: 150 K; 4–6: 100 K;
Bruker AXS Smart 1000 CCD diffractometer, MoKa radiation,
graphite monochromator, l = 0.71073) and corrected for
Lorentz, polarization, and absorption effects (semiempirical,
SADABS).[11a] Structure solution: heavy-atom method com-
bined with structure expansion by direct methods (DIRDIF).[11b]
Refinement: full-matrix least-squares methods based on F2;[11c]
all non-hydrogen atoms anisotropic, hydrogen atoms at calcu-
lated positions (refined riding). CCDC-658106 (3), -658494 (4),
-658107 (5), and -658108 (6) contain the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
[8] a) S. Friedrich, M. Schubart, L. H. Gade, I. J. Scowen, A. J.
Blake, P. E. Collier, L. H. Gade, M. McPartlin, P. Mountford, M.
Blake, P. E. Collier, L. H. Gade, P. Mountford, S. E. Pugh, M.
Ward, A. Maisse-François, P. Mountford, L. H. Gade, Chem.
François, H. Wadepohl, P. Mountford, L. H. Gade, Organo-
[9] Selected examples of hydrazido (1À charge) Ti complexes:
a) I. A. Latham, G. J. Leigh, G. Huttner, I. Jibril, J. Chem. Soc.
2389; c) S.-J. Kim, I. N. Jung, B. R. Yoo, S. Cho, J. Ko, S. H. Kim,
Zippel, P. Amdt, A. Ohff, A. Spannenberg, R. Kempe, U.
a) G. M.
Sheldrick,
SADABS-2004/1, Bruker AXS, 2004; b) P. T. Beurskens, G.
Beurskens, R. de Gelder, S. Garcia-Granda, R. O. Gould, R.
Israel, J. M. M. Smits, DIRDIF-99, University of Nijmegen, The
Netherlands, 1999; c) G. M. Sheldrick, SHELXL-97, University
of Göttingen, 1997.
[12] All of the molecular systems were optimized using X-ray
diffraction data as input structures. Hybrid quantum mechan-
ical:molecular mechanical (QM:MM, B3LYP:UFF) computa-
tional tools were used to model the complexes. The inner
segment (QM: B3LYP; (C, N: 6-31g(d); H: 6-31g; Zr:
LANL2DZ)) was defined by only the essential elements of the
first coordination sphere. Stationary points were characterized
by frequency analysis. Compound 3a was used as reference,
which is ca. 20 kcalmolÀ1 higher in energy (in the gas phase) than
compound 3. All the calculations, including orbital analysis
(NBO 3.0), have been carried out using Gaussian 03 program
package.[12a] A detailed description of the methods is provided in
the supporting info. a) Gaussian 03, Revision B.03, M. J. Frisch,
et al., see the Supporting Information.
Angew. Chem. Int. Ed. 2007, 46, 8426 –8430
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim