8912
S. Werle et al. / Tetrahedron Letters 48 (2007) 8909–8913
which were easily separated by chromatography.15 13
was then irradiated as above to provide disiloxane 1516
in quantitative yield. Oxidation of crude 15 under the
optimized conditions above led to diol 1615,17 in a satis-
fying 67% yield.
Bonneau, R.; Do¨rr, G.; Bouas-Laurent, H. Photochem.
Photobiol. Sci. 2003, 2, 289–296.
6. Lew, C. S. Q.; McClelland, R. A. J. Am. Chem. Soc. 1993,
115, 11516–11520.
7. For a review on organosilane photochemistry, see: Stein-
metz, M. G. Chem. Rev. 1995, 95, 1527–1588.
8. (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780–784; (b)
Jager, D. J. Org. React. 1990, 38, 1–223; (c) van Staden, L.
F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31,
195–200; (d) Hudrlick, P. F.; Peterson, D. J. Am. Chem.
Soc. 1975, 97, 1464–1468.
9. For silylation of 4a, see: (a) Bennetau, B.; Rajarison, F.;
Dunogues, J.; Babin, P. Tetrahedron 1993, 49, 10843–
10854; 4b, see: (b) Lee, Y.; Silverman, R. B. Tetrahedron
2001, 57, 5339–5352; 4c, see: (c) Katz, T. J.; Sudhakar, A.;
Teasley, M. F.; Gilbert, A. M.; Geiger, W. E.; Robben, M.
P.; Wuensch, M.; Ward, M. D. J. Am. Chem. Soc. 1993,
115, 3182–3198; 4d–e, see: (d) Bekele, H.; Nesloney, C. L.;
McWilliams, K. W.; Zacharias, N. M.; Chitnumsub, P.;
Kelly, J. W. J. Org. Chem. 1997, 62, 2259–2262.
10. Kolb, H. C.; vanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev 1994, 94, 2483–2547.
11. Stirring of the organosilanes in HFIP in the absence of
irradiation led to no reaction, indicating that the conjunc-
tion of alcohol and the irradiation was necessary for the
protodesilylation to occur.
12. Alkoxysilanes may be isolated under strictly anhydrous
conditions,6 which are not really suitable for preparative
chemistry.
These results thus unambiguously show that the 2,6-
dimethoxyphenylsilyl group can be considered as a
new potent masked hydroxyl group. It is stable under
basic conditions and in mildly acidic medium.18 It is
cleaved under neutral conditions which should be com-
patible with the presence of other arylsilyl groups. One
could then envisage a selective oxidation of this aryl
group in the presence of other aryldimethylsilanes such
as PhMe2Si,2a,b p-TolMe2Si19 or the recently developed
(Ph2CH)Me2Si group.20 Interestingly, when treated
under buffered Fleming conditions1c,d (AcOOH, AcO-
Na, KBr, rt, 88 h), 7a led to 12 with only 50% conver-
sion and did not produce the desired alcohol under
Tamao conditions1a,b (30% H2O2, K2CO3, KF, THF–
MeOH, rt, 73 h).
In summary, we devised a photolabile arylsilicon group
that can be used for the C–Si bond oxidation. Pro-
todesilylation occurs under neutral conditions, generat-
ing a siloxane that may then be oxidized under
standard conditions. Our preliminary results demon-
strate that the methodology is useful for the oxidation
of acid and base sensitive organosilanes. Application
of this sequence to more complex organosilanes is under
way and will be reported in due course.
13. General procedure for photoprotonation of 2,6-dimethoxy-
phenylsilyl group: The solution of the arylsilane (0.3 mmol)
in HFIP (14 ml) was irradiated over a period of 14 h. After
evaporation of the solvent and 1,3-dimethoxybenzene, the
crude siloxane was obtained as a yellow oil that was not
1
purified further, but used directly in the next step. 8a: H
NMR (300 MHz, CDCl3): d 5.26–5.14 (m, 1H), 4.24–4.19
(m, 1H), 3.91 (dd, J = 7.0 Hz, 11.9 Hz, 1H), 2.02 (s, 3H),
2.00 (s, 3H), 1.01–0.86 (m, 2H), 0.11 (s, 3H), 0.09 ppm (s,
3H). 13C NMR: (75.5 MHz, CDCl3): d 170.8, 70.4, 69.6,
66.9, 21.3, 20.9, 20.8, 1.4, 0.9 ppm. MS (LSIMS, FAB+)
m/z: 235 (34%); 265 (8%); 281 (6%); 413 (10%); 473
([M+Na]+, 100%).
Acknowledgements
The authors gratefully acknowledged the CNRS,
Region Aquitaine and the Institut Universitaire de
France for financial support. We also thank Dr. Dario
´
14. (a) Li, G.; Chang, H.-T.; Sharpless, K. B. Angew. Chem.,
Int. Ed. 1996, 35, 451–454; (b) Rudolph, J.; Sennhenn, P.
C.; Vlaar, C. P.; Sharpless, K. B. Angew. Chem., Int. Ed.
1996, 35, 2810–2813; (c) Li, G.; Angert, H. H.; Sharpless,
K. B. Angew. Chem., Int. Ed. 1996, 35, 2813–2817; (d)
Angelaud, R.; Babot, O.; Charvat, T.; Landais, Y. J. Org.
Chem. 1999, 64, 9613–9624.
´
Bassani and Dr. Jean-Pierre Desvergne (Universite
Bordeaux 1, ISM) for fruitful discussions.
References and notes
15. Angelaud, R.; Landais, Y. Tetrahedron 2000, 56, 2025–
2036.
16. Compound 15: H NMR (250 MHz, CDCl3): d 5.38 (br s,
1. (a) Tamao, K.; Kakui, T.; Akita, M.; Iwahara, T.;
Kanatani, R.; Yoshida, J.; Kumada, M. Tetrahedron
1983, 39, 983–990; (b) Tamao, K.; Ishida, N.; Tanaka, T.;
Kumada, M. Organometallics 1983, 2, 1694–1696; (c)
Fleming, I.; Henning, R.; Plaut, H. J. Chem. Soc., Chem.
Commun. 1984, 29–31; (d) Fleming, I.; Henning, R.;
Parker, D. C.; Plaut, H.; Sanderson, P. E. J. J. Chem. Soc.,
Perkin Trans. 1 1995, 317–337.
1
1H), 4.08 (quart, J = 6.8 Hz, 2H), 3.94–3.90 (m, 1H),
3.33–3.24 (m, 1H), 3.03–2.91 (m, 1H), 1.21 (t, J = 7.0 Hz,
3H), 1.06–0.71 (m, 2H), 0.26 (d, 3H), 0.18–0.05 ppm (m,
3H). 13C NMR: (75.5 MHz, CDCl3): d 157.6, 68.8, 61.1,
49.6, 24.9, 14.7, 1.6, 1.2 ppm.
17. General procedure for the disiloxane oxidation: To a
solution of disiloxane (0.2 mmol) in DMF (2.2 ml) was
added at room temperature, KF (1 mmol) and then at 0 ꢁC
acetic anhydride (1 mmol) and a 30% aqueous solution of
H2O2 (10 mmol). The reaction mixture was stirred at 60 ꢁC
for 36 h, then quenched with a 25% Na2S2O3 solution.
After the addition of a 0.5% solution of HCl (5 ml), the
reaction mixture was extracted with diethylether (3·) and
dried over Na2SO4. Evaporation of the solvent in vacuo
and purification of the residue by column chromatography
led to the desired alcohol. Compound 16:15 1H NMR
(250 MHz, CDCl3): d 5.56 (br s, 1H), 4.11 (quart,
2. For reviews, see: (a) Fleming, I. Chemtracts: Org. Chem.
1996, 1–64; (b) Landais, Y.; Jones, G. Tetrahedron 1996,
52, 7599–7662; (c) Tamao, K. In Advances in Silicon
Chemistry; Jai Press, 1996; Vol. 3, p 1.
3. (a) Pirrung, M. C.; Fallon, L.; Zhu, J.; Lee, Y. R. J. Am.
Chem. Soc. 2001, 123, 3638–3643; (b) Pirrung, M. C.; Lee,
Y. R. J. Org. Chem. 1993, 58, 6961–6963.
4. Norley, M. C.; Kocienski, P. J.; Faller, A. Synlett 1994,
77–78.
5. (a) Desvergne, J.-P.; Bouas-Laurent, H.; Castellan, A.;
Kowalski, J.; Yurek, E.; De Haut de Sigy, A. J. Chem.
Soc., Chem. Commun. 1986, 82–84; (b) Desvergne, J.-P.;