10.1002/anie.201806747
Angewandte Chemie International Edition
COMMUNICATION
cycloaddition of amide 1u produced 7b[4l] in 74% yield (Scheme
2, d).
Evans, E. W. Thomas, R. E. Cherpeck, J. Am. Chem. Soc. 1982, 104,
3695-3700; d) W. Oppolzer, C. Fehr, J. Wameke, Helv. Chim. Acta
1977, 60, 48-58; e) W. J. Klaver, H. Hiemstra, W. N. Speckamp, J. Am.
Chem. Soc. 1989, 111, 2588-2595; f) M. P. Heitz, L. E. Overman, J.
Org. Chem. 1989, 54, 2591-2596; g) G. Kim, M. Y. Chu-Moyer, S. J.
Danishefsky, G. K. Schulte, J. Am. Chem. Soc. 1993, 115, 30-39; h) P.
Schär, P. Renaud, Org. Lett. 2006, 8, 1569–1571; i) B. Dhudshia, B. F.
T. Cooper, C. L. B. Macdonaldzand, A. N. Thadani, Chem. Commun.
2009, 463–465; j) K. Shirokane, T. Wada, M. Yoritate, R. Minamikawa,
N. Takayama, T. Sato, N. Chida, Angew. Chem. 2014, 126, 522-526;
Angew. Chem. Int. Ed. 2014, 53, 512−516; k) A. S. Lee, B. B. Liau, M.
D. Shair, J. Am. Chem. Soc. 2014, 136, 13442–13452; l) K. Annadi, A.
G. H. Wee, J. Org. Chem. 2015, 80, 5236–5251; m) P. W. Tan, J.
Seayad, D. J. Dixon, Angew. Chem. 2016, 128, 13634 –13638; Angew.
Chem. Int. Ed. 2016, 55, 13436–13440.
O
[IrCl(COE)2]2 (0.1 mol%)
R2
Et2SiH2 (2.0 equiv), CH Cl , RT;
2
2
N
O
H
N
X
R2
X
BrZn
CO2Me
. X = H, R2 = Me, 71%
5b. X = CO2Me, R2 = Bn, 72%
1t. X = H, R2 = Me
1n. X = CO2Me, R2 = Bn
5a
(a)
(b)
1.1 equiv in THF
O
OTMS
O
[IrCl(COE) 2 2
]
(0.1 mol%)
R2
+
N
Et2SiH2 (2.0 equiv), CH Cl , RT;
2
2
Ph
H
Ph
N
ZnCl2 (2.0 equiv)
(2.0 equiv), MeOH
OMe
Danishefsky's
R2
6
7a. R2 = Me, 70% (c)
7b. R2 = n-Bu, 74%
1t. R2 = Me
1u. R2 = n-Bu
(d)
6
diene ( )
[3] For reviews, see: a) T. Sato, Y. Makoto, H. Tajima, N. Chida, Org. Biomol.
Chem. 2018, 16, 3864-3875; b) D. Kaiser, N. Maulide, J. Org. Chem.
2016, 81, 4421−4428; c) T. Sato, N. Chida, J. Syn. Org. Chem. Jpn.
2016, 74, 599−610; d) V. Pace, W. Holzer, B. Olofsson, Adv. Synth.
Catal. 2014, 356, 3697−3736; e) T. Sato, N. Chida, Org. Biomol. Chem.
2014, 12, 3147−3150; f) V. Pace, W. Holzer, Aust. J. Chem. 2013, 66,
507−510; g) D. Seebach, Angew. Chem. 2011, 123, 99−105; Angew.
Chem. Int. Ed. 2011, 50, 96−101.
Scheme 2. Catalytic reductive annulation/cycloaddition
In summary, a mild, versatile, and efficient method has been
developed for the direct catalytic reductive functionalization of
secondary amides. This method validates secondary amides as
a class of stable and reliable building blocks that undergo direct
and chemoselective transformation into a diverse variety of
multiply functionalized amines. The successful relay
transformation of the amides prepared by other synthetic
methods demonstrated the potential of the current method as a
strategy for late-stage transformation of amides in both natural
product synthesis and medicinal chemistry. Work on this
direction is ongoing in our laboratory.
[4]
For selected examples on reductive alkylation of tert-amides to yield
amines employing stoichiometric activating reagent Tf2O, see: a) K.-J.
Xiao, J.-M. Luo, K.-Y. Ye, Y. Wang, P.-Q. Huang, Angew. Chem. 2010,
122, 3101 – 3104; Angew. Chem. Int. Ed. 2010, 49, 3037−3040; b) K.
Shirokane, Y. Kurosaki, T. Sato, N. Chida, Angew. Chem. 2010, 122,
6513–6516; Angew. Chem. Int. Ed. 2010, 49, 6369−6372; c) G. Vincent,
R. Guillot, C. Kouklovsky, Angew. Chem. 2011, 123, 1386–1389;
Angew. Chem. Int. Ed. 2011, 50, 1350−1353; d) M. Jaekel, J. Qu, T.
Schnitzer, G. Helmchen, Chem. Eur. J. 2013, 19, 16746−16755; e) 2j; f)
M. Nakajima, T. Wada, M. Yoritate, R. Minamikawa, T. Sato, N. Chida,
Y. Oda, K. Shirokane, Chem. Eur. J. 2014, 20, 17565−17571; g) K. L.
White, M. Mewald, M. Movassaghi, J. Org. Chem. 2015, 80, 7403−7411;
Reductive alkylation of sec-amides: h) K.-J. Xiao, A.-E Wang, P.-Q.
Huang, Angew. Chem. 2012, 124, 8439 8442; Angew. Chem. Int. Ed.
2012, 51, 8314−8317; i) P.-Q. Huang, Y.-H. Huang, K.-J. Xiao, Y. Wang,
X.-E. Xia, J. Org. Chem. 2015, 80, 2861−2868; j) J.-F. Zheng, X.-Y.
Qian, P.-Q. Huang, Org. Chem. Front. 2015, 2, 927−935; k) H. Chen,
J.-L. Ye, P.-Q. Huang, Org. Chem. Front. 2018, 5, 943−947; l) J.-F.
Zheng, Z.-Q. Xie, X.-J. Chen, P.-Q. Huang, Acta Chim. Sinica 2015, 73,
705−715; For related C-C bond forming reactions, see: m) D. Kaiser, A.
de la Torre, S. Shaaban, N. Maulide, Angew. Chem. 2017, 129, 6015–
6019; Angew. Chem. Int. Ed. 2017, 56, 5921−5925; n) D. Kaiser, C. J.
Teskey, P. Adler, N. Maulide, J. Am. Chem. Soc. 2017, 139, 16040–
16043.
Acknowledgements
The authors are grateful for financial support from the National
Key R&D Program of China (grant No. 2017YFA0207302), the
National Natural Science Foundation of China (21332007 and
21672176), and the Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT) of Ministry of
Education.
Conflict of interest
The authors declare no conflict of interest.
[5] a) I. Delidovich, R. Palkovits, Green Chem. 2016, 18, 590−593; b) C. A.
Busacca, D. R. Fandrick, J. J. Song, C. H. Senanayake, Adv. Synth.
Catal. 2011, 353, 1825−1864.
Keywords: reductive alkylation • catalysis • secondary amides •
[6]
a) H. Chen, J.-L. Ye, P.-Q. Huang, Org. Chem. Front. 2018, 5, DOI:
10.1039/c7qo01031a; b) Á. L. F. de Arriba, E. Lenci, M. Sonawane, O.
Formery, D. J. Dixon, Angew. Chem. 2017, 129, 3709 –3713; Angew.
Chem. Int. Ed. 2017, 56, 3655−3659; c) T. Slagbrand, G. Kervefors, F.
Tinnis, H. Adolfsson, Adv. Synth. Catal. 2017, 359, 1990−1995; d) P.
Trillo, T. Slagbrand, F. Tinnis, H. Adolfsson, Chem. Commun. 2017, 53,
9159−9162; e) L.-G. Xie, D. J. Dixon, Chem. Sci. 2017, 8, 7492−7497; f)
ref. 2m; g) S. Katahara, S. Kobayashi, K. Fujita, T. Matsumoto, T. Sato,
N. Chida, J. Am. Chem. Soc. 2016, 138, 5246−5249; h) P.-Q. Huang,
W. Ou, F. Han, Chem. Commun. 2016, 52, 11967−11970; i) M.
Nakajima, T. Sato, N. Chida, Org. Lett. 2015, 17, 1696−1699; j) A. W.
Gregory, A. Chambers, A. Hawkins, P. Jakubec, D. J. Dixon, Chem.
Eur. J. 2015, 21, 111−114.
C-C bond formation • one-pot reaction • chemoselective reaction
[1] For selected recent reviews, see: a) W. N. Speckamp, M. J. Moolenaar,
Tetrahedron 2000, 56, 3817–3856; b) B. E. Maryanoff, H.-C. Zhang, J.
H. Cohen, I. J. Turchi, C. A. Maryanoff, Chem. Rev. 2004, 104, 1431–
1628; c) J. Royer, M. Bonin, L. Micouin, Chem. Rev. 2004, 104, 2311–
2352; d) P.-Q. Huang, Synlett 2006, 1133-1147; e) A. Yazici, S. G.
Pyne, Synthesis 2009, 339-368; f) A. Yazici, S. G. Pyne, Synthesis
2009, 513-541; g) P.-Q. Huang, Asymmetric Synthesis of Five-
Membered Ring Heterocycles, in: Asymmetric Synthesis of Nitrogen
Heterocycles, (Ed.: J. Royer), Wiley-VCH, Weinheim, 2009, pp 51-94.
[2] For selected total synthesis of alkaloids employing reductive alkylation of
amide as a key step, see: a) E. J. Corey, J. F. Arnett, G. N. Widiger, J.
Am. Chem. Soc. 1975, 97, 430-431; b) M. Aratani, L.V. Dunkerton, T.
Fukuyama, Y. Kishi, J. Org. Chem. 1975, 40, 2011-2012; c) D. A.
[7]
a) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Chem. Soc. Rev.
2014, 43, 2714−2742; b) H.-Q. Do, S. Bachman, A. C. Bissember, J. C.
Peters, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 2162–2167.
This article is protected by copyright. All rights reserved.