versatile Cu(I)-catalyzed 1,3-diploar cycloaddition protocol to
porphyrin chemistry are very scarce.5
First Triazole-Bridged Unsymmetrical Porphyrin
Dyad via Click Chemistry
Photoinduced electron and energy transfer are two important
processes involved in natural photosynthesis. Several covalently
linked porphyrin dyads have been prepared to study these
processes.6 Recently, we developed methods to synthesize the
functionalized heteroporphyrin building blocks and used them
for the synthesis of several covalently linked ethyne-, phenyl-
ethyne-, and diphenylethyne-bridged unsymmetrical porphyrin
dyads containing two dissimilar porphyrin subunits such as N4-
N3S, N4-N3O, N3O-N3S, N3S-N2S2, etc.7 The excited-state
properties of these porphyrin dyads were studied to identify the
suitable porphyrin dyad in which maximum unidirectional
singlet-singlet energy transfer occurs for molecular electronic
applications. In continuation of our efforts toward the synthesis
of heteroporphyrin-based porphyrin assemblies, we describe our
attempts toward the synthesis of the first triazole-bridged
porphyrin dyad containing N2S2 porphyrin and N4/ZnN4 por-
phyrin subunits using click chemistry. The preliminary photo-
physical study supported an efficient energy transfer from N4/
ZnN4 porphyrin subunit to N2S2 porphyrin subunit on selective
excitation of N4/ZnN4 porphyrin subunit.
Sokkalingam Punidha, Jasmine Sinha, Anil Kumar, and
Mangalampalli Ravikanth*
Department of Chemistry, Indian Institute of Technology,
Bombay, Powai, Mumbai 400 076, India
ReceiVed September 13, 2007
The N2S2 porphyrin containing alkyne functional group and
the N4 porphyrin building block containing azide functional
group were synthesized over a sequence of steps as shown in
Schemes 1 and 2, respectively. The required thiophene, 3,4-(2-
methyl-2-hydroxymethylpropane-1,3-diyldioxy)thiophene 1 was
synthesized in four steps starting from thiophene by slight
modifications of a reported procedure.8 The thiophene diol 2
was synthesized by treating 1 equiv of a 2,5-dilithiated derivative
of thiophene 1 with 2.5 equiv of p-tolualdehyde in n-hexane.
The TLC analysis showed the formation of the desired diol with
some amount of thiophene mono-ol. The required diol 2 was
separated by column chromatography and afforded pure diol 2
as a colorless solid in 62% yield. The diol 2 was characaterized
Click chemistry has been successfully applied in the synthesis
of the first example of a triazole-bridged porphyrin dyad
containing N2S2 porphyrin and N4 or ZnN4 porphyrin
subunits, and fluorescence study indicated a possibility of
singlet-singlet energy transfer from the N4 or ZnN4 por-
phyrin subunit to the N2S2 porphyrin subunit.
1
by H and 13C NMR, IR, mass, and elemental analysis.
(5) Devaraj, N. K.; Decreau, R. A.; Ebina, W.; Collman, J. P.; Chidsey,
C. E. D. J. Phys. Chem. B 2006, 110, 15955-15962.
“Click” chemistry represents a modular approach toward
synthesis that uses only the most practical transformations to
make connections with excellent fidelity.1 The Cu(I)-catalyzed
Huisgen 1,3-dipolar cycloaddition of alkynes and azides to give
1,4-disubstituted 1,2,3-triazoles has emerged as a powerful
linking reaction and found widespread applications ranging from
combinatorial drug research,2 material science,3 to bioconjugate
chemistry.4 Interestingly, the reports on application of this
(6) (a) Thamyongkit, P.; Muresan, A. Z.; Diers, J. R.; Holten, D.; Bocian,
D. F.; Lindsey, J. S. J. Org. Chem. 2007, 72, 5207-5217. (b) Wagner, R.
W.; Johnson, T. E.; Li, F.; Lindsey, J. S. J. Org. Chem. 1995, 60, 5266-
5273. (c) Sazanovich, I. V.; Balakumar, A.; Muthukumaran, K.; Hindin,
E.; Kirmaier, C.; Diers, J. R.; Lindsey, J. S.; Bocian, D. F.; Holten, D.
Inorg. Chem. 2003, 42, 6616-6628. (d) Winters, M. U.; Ka¨rnbratt, J.;
Blades, H. E.; Wilson, C. J.; Frampton, M. J.; Anderson, H. L.; Albinsson,
B. Chem. Eur. J. 2007, 13, 7385-7394. (e) Winters, M. U.; Ka¨rnbratt, J.;
Eng, M.; Wilson, C. J.; Anderson, H. L.; Albinsson, B. J. Phys. Chem. C
2007, 7192-7199. (f) Locos, O. B.; Arnold, D. P. Org. Biomol. Chem.
2006, 902-916. (g) Osuka, A.; Shimidzu, H. Angew. Chem., Int. Ed. Engl.
1997, 36, 135-137. (h) Aratani, N.; Osuka, A.; Kim, Y. H.; Jeong, D. H.;
Kim, D. Angew. Chem., Int. Ed. Engl. 2000, 39, 1458-1462.
(1) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.
Ed. Engl. 2001, 40, 2004-2021. (b) Maria, V. G.; Mar´ıa, J. A.; OÄ scar, L.
Synthesis 2007, 1589-1620.
(2) (a) Lee, L. V.; Mitchell, M. L.; Huang, S.-J.; Fokin, V. V.; Sharpless,
K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003, 125, 9588-9589. (b) Brik,
A.; Muldoon, J.; Lin, Y.-C.; Elder, J. H.; Goodsell, D. S.; Olson, A. J.;
Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. ChemBioChem 2003, 4, 1246-
1248.
(3) (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel,
A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem. 2004, 43, 3928-3932. (b) Helms, B.; Mynar, J. L.; Hawker,
C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 15020-15021.
(4) (a) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K.
B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192-3193. (b) Burley, G.
A.; Gierlich, J.; Mofid, M. R.; Nir, H.; Tal, S.; Eichen, Y.; Carell, T. J.
Am. Chem. Soc. 2006, 128, 1398-1399.
(7) (a) Kumaresan, D.; Agarwal, N.; Ravikanth, M. J. Chem. Soc., Perkin
Trans. 1 2001, 1644-1648. (b) Kumaresan, D.; Agarwal, N.; Gupta, I.;
Ravikanth, M. Tetrahedron 2002, 58, 5347-5356. (c) Gupta, I.; Agarwal,
N.; Ravikanth, M. Eur. J. Org. Chem. 2004, 1693-1697. (d) Kumaresan,
D.; Datta, A.; Ravikanth, M. Chem. Phys. Lett. 2004, 395, 87-91. (e) Gupta,
I.; Ravikanth, M. J. Org. Chem. 2004, 69, 6796-6811. (f) Punidha, S.;
Agarwal, N.; Ravikanth, M. Eur. J. Org. Chem. 2005, 2500-2517. (g)
Punidha, S.; Ravikanth, M. Synlett 2005, 14, 2199-2203. (h) Gupta, I.;
Frohlich, R.; Ravikanth, M. Chem. Commun. 2006, 3726-3728. (i) Punidha,
S.; Agarwal, N.; Gupta, I.; Ravikanth, M. Eur. J. Org. Chem. 2007, 1168-
1175. (j) Rai, S.; Ravikanth, M. Tetrahedron 2007, 63, 2455-2465. (k)
Gupta, I.; Ravikanth, M. Inorg. Chim. Acta 2007, 360, 1731-1742.
(8) Kros, A.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. J. Polym. Sci.
Part A: Polym. Chem. 2002, 40, 738-747.
10.1021/jo702018s CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/11/2007
J. Org. Chem. 2008, 73, 323-326
323