amines include (1) redox organometallic reagents4 such as RuH2-
(PPh3)4 and RhH(PPh3)4, (2) exposure to acidic conditions5 by
generating a corresponding cation intermediate with suitable
substrates, (3) phosphorus-assisted Mitsunobu reaction,6 and (4)
direct activation3 including halogenation to produce a halo-amine
intermediate. For example, the use of the Appel reaction and
its variants is widely applied,7 although there are drawbacks in
large-scale production. Surprisingly, direct chlorination of amino
alcohol free bases with SOCl2, which was discovered several
decades ago, has not been well studied;8,9 its application is
underutilized due to the expected competition10 between N- and
O-sulfinylation, and subsequent “inevitable” side reactions. Low
yields are typically an issue for this reaction.11
Chlorination/Cyclodehydration of Amino
Alcohols with SOCl2: An Old Reaction Revisited
Feng Xu,* Bryon Simmons, Robert A. Reamer,
Edward Corley, Jerry Murry, and David Tschaen
Department of Process Research, Merck Research Laboratory,
Rahway, New Jersey 07065
ReceiVed September 1, 2007
Recently during our asymmetric syntheses of (+)-bicifadine
(1a) and DOV21947 (1b) (Scheme 1),12 we developed a
practical direct chlorination of amino alcohol 2 with SOCl2 to
prepare amino chloride 3, which immediately cyclized to
3-azabicyclo[3.1.0]hexanes 1 upon pH adjustment during aque-
ous workup in nearly quantitative yield. Herein, we further detail
our results including the reaction scope and mechanistic insights
into the reaction pathway as revealed by NMR spectroscopic
studies.
The formation of chlorosulfinyl ester intermediates during
the chlorination of alcohols with SOCl2 is well recognized.
Isolation of the chlorosulfinyl ester has been reported.13 It is
also well-known that treatment of 1,2-amino alcohols with
SOCl2 in the presence of bases gives cyclic sulfamides, which
are the products of subsequent intramolecular O- or N-
sulfinylation of the initially formed chlorosulfinyl esters/
amides.14 After surveying the literature15,16 related to chlorination
A simple, one-pot preparation of cyclic amines via efficient
chlorination of amino alcohols with use of SOCl2 has been
developed. This approach obviates the need for the classical
N-protection/O-activation/cyclization/deprotection sequence
commonly employed for this type of transformation. The
reaction pathways and the general scope of this method have
also been investigated.
Cyclodehydration of amino alcohols (eq 1) is an important
and useful transformation for the preparation of nitrogen
heterocycles. Many cyclodehydration methodologies1,2 have
been developed; however, classical indirect cyclodehydration
of amino alcohols typically involves a tedious sequence of
protection/activation/cyclization/deprotection. Although com-
monly implemented,1,2 these indirect approaches require multiple
chemical steps that reduce the overall efficiency of the
transformation. The commonly used direct cyclodehydration
methods3-7 of amino alcohols to the corresponding cyclic
(6) For recent reviews, see: (a) Hughes, D. L. Org. Prep. Proc. Int.
1996, 28, 127. (b) Hughes, D. L. Org. React. 1992, 42, 335.(c) Mitsunobu,
O. Synthesis 1981, 1.
(7) For reviews, see: (a) Castro, B. R. Org. React. 1983, 29, 1. (b) Appel,
R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801.
(8) For recent reviews about SOCl2, see: (a) El-Sakka, I. A.; Hassan,
N. A. J. Sulfur Chem. 2005, 26, 33. (b) Wirth, D. D. In Encyclopedia of
Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons:
New York, 1995; p 4873. (c) Oka, K. Synthesis 1981, 661.
(9) Chlorination of alcohols, excluding amino alcohols, with SOCl2 is
thoroughly studied in terms of both mechanism and practical applications.8
(10) For example, see: Pilkington, M.; Wallis, J. D. Chem. Commun.
1993, 1857.
(11) For examples of chlorination of amino alcohol salts, see: (a) Back,
T. G.; Nakajima, K. J. Org. Chem. 2000, 65, 4543. (b) Bubnov, Y. N.;
Zykov, A. Y.; Ignatenko, A. V.; Mikhailovsky, A. G.; Shklyaev, Y. V.;
Shklyaev, V. S. IzV. Akad. Nauk., Ser. Khim. 1996, 935. (c) Dobler, M.;
Beerli, R.; Weissmahr, W. K.; Borschberg, H.-J. Tetrahedron: Asymmetry
1992, 11, 1411. (d) Ko´bor, J.; Fu¨lo¨p, F.; Berna´th, G.; Soha´r, P. Tetrahedron
1987, 43, 1887. (e) Ba¨ckvall, J. E.; Renko, Z. D.; Bystro¨m, S. E. Tetrahedron
Lett. 1987, 28, 4199. (f) Piper, J. R.; Johnston, T. P. J. Org. Chem. 1963,
28, 981. (g) Norton, T. R.; Seibert, R. A.; Benson, A. A.; Bergstrom, F. W.
J. Am. Chem. Soc. 1946, 68, 1572.
(1) For recent reviews, see: (a) Buffat, M. G. P. Tetrahedron 2004, 60,
1701. (b) Larock, R. C. ComprehensiVe Organic Transformations, 2nd ed.;
Wiley-VCH: New York, 1999; pp 689-702 and 779-784.
(2) For recent examples and applications, see: (a) Smith, A. B., III; Kim,
D.-S. J. Org. Chem. 2006, 71, 2547. (b) Trost, B. M.; Tang, W.; Toste, F.
D. J. Am. Chem. Soc. 2005, 127, 14785. (c) Pyne, S. G.; Davis, A. S.;
Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett
2004, 2670. (d) Kan, T.; Kobayshi, H.; Fukuyama, T. Synlett 2002, 697.
(e) Ina, H.; Kibayashi, C. J. Org. Chem. 1993, 58, 52. (f) Burgess, K.;
Chaplin, D. A.; Henderson, I.; Pan, Y. T.; Elbein, A. D. J. Org. Chem.
1992, 57, 1103. (g) Schink, H. E.; Pettersson, H.; Ba¨ckvall, J.-E. J. Org.
Chem. 1991, 56, 2769.
(3) For recent applications of direct cyclodehydration methods, see: (a)
de Figueiredo, R. M.; Fro¨hlich, R.; Christmann, M. J. Org. Chem. 2006,
71, 4147. (b) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646.
(c) Pulz, R.; Al-Harrasi, A.; Reissig, H.-U. Org. Lett. 2002, 4, 2353 and
references cited therein.
(4) (a) Nota, T.; Murahashi, S.-I. Synlett 1991, 693. (b) Murahashi, S.-
I.; Kondo, K.; Hakata, T. Tetrahedron Lett. 1982, 23, 229. (c) Grigg, R.;
Mitchell, T. R. B.; Sutthivaiyakit S.; Tongpenyai, N. Chem. Commun. 1981,
611.
(5) For examples, see: (a) Tanaka, H.; Murakami, Y.; Aizawa, T.; Torii,
S. Bull. Chem. Soc. Jpn. 1989, 62, 3742. (b) Papageorgiou, C.; Borer, X.
HelV. Chim. Acta 1988, 71, 1079.
(12) Xu, F.; Murry, J. A.; Simmons, B.; Corley, E.; Fitch, K.; Karady,
S.; Tschaen, D. Org. Lett. 2006, 8, 3885.
(13) Gerrard, W. J. Chem. Soc. 1940, 218
(14) For examples, see: (a) Lu, B. Z.; Jin, F.; Zhang, Y.; Wu, X.; Wald,
S. A.; Senanayake, C. H. Org. Lett. 2005, 7, 1465. (b) Benson, S. C.; Snyder,
J. K. Tetrahedron Lett. 1991, 32, 5885. (c) Lowe, G.; Reed, M. A.
Tetrahedron: Asymmetry 1990, 1, 885.
10.1021/jo701877h CCC: $40.75 © 2008 American Chemical Society
Published on Web 12/05/2007
312
J. Org. Chem. 2008, 73, 312-315