Journal of the American Chemical Society
Page 8 of 10
R.; Martin, R., Ipso-Borylation of Aryl Ethers via Ni-Catalyzed C–OMe
REFERENCES
Cleavage. J. Am. Chem. Soc. 2015, 137, 6754-6757; (f) Atack, T. C.; Cook,
S. P., Manganese-Catalyzed Borylation of Unactivated Alkyl Chlorides. J.
Am. Chem. Soc. 2016, 138, 6139-6142; (g) Bose, S. K.; Brand, S.;
Omoregie, H. O.; Haehnel, M.; Maier, J.; Bringmann, G.; Marder, T. B.,
Highly Efficient Synthesis of Alkylboronate Esters via Cu(II)-Catalyzed
Borylation of Unactivated Alkyl Bromides and Chlorides in Air. ACS
Catal. 2016, 6, 8332-8335; (h) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian,
M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.;
Yan, M.; Baran, P. S., Decarboxylative Borylation. Science 2017, 356,
1045-1052; (i) Wang, J.; Shang, M.; Lundberg, H.; Feu, K. S.; Hecker, S. J.;
Qin, T.; Blackmond, D. G.; Baran, P. S., Cu-Catalyzed Decarboxylative
Borylation. ACS Catal. 2018, 8, 9537-9542.
(6) (a) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.;
Aggarwal, V. K., Photoinduced Decarboxylative Borylation of
Carboxylic Acids. Science 2017, 357, 283-286; (b) Wu, J.; He, L.; Noble,
A.; Aggarwal, V. K., Photoinduced Deaminative Borylation of
Alkylamines. J. Am. Chem. Soc. 2018, 140, 10700-10704; (c) Wu, J.; Bar,
R. M.; Guo, L.; Noble, A.; Aggarwal, V. K., Photoinduced Deoxygenative
Borylations of Aliphatic Alcohols. Angew. Chem., Int. Ed. 2019, 58,
18830-18834.
(7) Zhang, L.; Wu, Z. Q.; Jiao, L., Photoinduced Radical Borylation of
Alkyl Bromides Catalyzed by 4-Phenylpyridine. Angew. Chem., Int. Ed.
2020, 59, 2095-2099.
(8) Mazzarella, D.; Magagnano, G.; Schweitzer-Chaput, B.; Melchiorre,
P., Photochemical Organocatalytic Borylation of Alkyl Chlorides,
Bromides, and Sulfonates. ACS Catal. 2019, 9, 5876-5880.
(9) (a) Cheng, Y.; Mück-Lichtenfeld, C.; Studer, A., Metal-Free Radical
Borylation of Alkyl and Aryl Iodides. Angew. Chem., Int. Ed. 2018, 57,
16832-16836; (b) Friese, F. W.; Studer, A., Deoxygenative Borylation of
Secondary and Tertiary Alcohols. Angew. Chem., Int. Ed. 2019, 58, 9561-
9564.
(10) For reviews: (a) Fyfe, J. W. B.; Watson, A. J. B., Recent
Developments in Organoboron Chemistry: Old Dogs, New Tricks. Chem
2017, 3, 31-55; (b) Friese, F. W.; Studer, A., New Avenues for C−B Bond
Formation via Radical Intermediates. Chem. Sci. 2019; (c) Nguyen, V.
D.; Nguyen, V. T.; Jin, S.; Dang, H. T.; Larionov, O. V., Organoboron
Chemistry Comes to Light: Recent Advances in Photoinduced Synthetic
Approaches to Organoboron Compounds. Tetrahedron 2019, 75, 584-
602; For selected examples: (d) Hu, J.; Wang, G.; Li, S.; Shi, Z., Selective
C-N Borylation of Alkyl Amines Promoted by Lewis Base. Angew. Chem.,
Int. Ed. 2018, 57, 15227-15231; (e) Sandfort, F.; Strieth-Kalthoff, F.;
Klauck, F. J. R.; James, M. J.; Glorius, F., Deaminative Borylation of
Aliphatic Amines Enabled by Visible Light Excitation of an Electron
Donor-Acceptor Complex. Chem. Eur. J. 2018, 24, 17210-17214; (f)
Maekawa, Y.; Ariki, Z. T.; Nambo, M.; Crudden, C. M., Pyridine-Catalyzed
Desulfonative Borylation of Benzyl Sulfones. Org. Biomol. Chem. 2019,
17, 7300-7303.
1
2
3
4
5
6
7
8
(1) For the reviews and book chapters: (a) Miyaura, N.; Suzuki, A.,
Palladium-Catalyzed Cross-Coupling Reactions of Organoboron
Compounds. Chem. Rev. 1995, 95, 2457-2483; (b) Molander, G. A.; Ellis,
N., Organotrifluoroborates:ꢀ Protected Boronic Acids That Expand the
Versatility of the Suzuki Coupling Reaction. Acc. Chem. Res. 2007, 40,
275-286; (c) Hall, D. G., Structure, Properties, and Preparation of Boronic
Acid Derivatives. Overview of Their Reactions and Applications. In
Boronic Acids, Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2011; Chapter 1,
pp 1-133; (d) Leonori, D.; Aggarwal, V. K., Lithiation–Borylation
Methodology and Its Application in Synthesis. Acc. Chem. Res. 2014, 47,
3174-3183; (e) Li, J.; Grillo, A. S.; Burke, M. D., From Synthesis to
Function via Iterative Assembly of N-Methyliminodiacetic Acid
Boronate Building Blocks. Acc. Chem. Res. 2015, 48, 2297-2307; (f)
Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander,
G. A., Single-Electron Transmetalation via Photoredox/Nickel Dual
Catalysis: Unlocking a New Paradigm for sp3–sp2 Cross-Coupling. Acc.
Chem. Res. 2016, 49, 1429-1439; (g) Namirembe, S.; Morken, J. P.,
Reactions of Organoboron Compounds Enabled by Catalyst-Promoted
Metalate Shifts. Chem. Soc. Rev. 2019, 48, 3464-3474; For selected
examples: (h) Hong, K.; Liu, X.; Morken, J. P., Simple Access to Elusive α-
Boryl Carbanions and Their Alkylation: An Umpolung Construction for
Organic Synthesis. J. Am. Chem. Soc. 2014, 136, 10581-10584; (i) Zhang,
L.; Lovinger, G. J.; Edelstein, E. K.; Szymaniak, A. A.; Chierchia, M. P.;
Morken, J. P., Catalytic Conjunctive Cross-Coupling Enabled by Metal-
Induced Metallate Rearrangement. Science 2016, 351, 70-74; (j)
Kischkewitz, M.; Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A., Radical-
Polar Crossover Reactions of Vinylboron Ate Complexes. Science 2017,
355, 936-938; (k) Lee, B.; Chirik, P. J., Ketone Synthesis from
Benzyldiboronates and Esters: Leveraging α-Boryl Carbanions for
Carbon-Carbon Bond Formation. J. Am. Chem. Soc. 2020, 142, 2429-
2437.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Ballatore, C.; Huryn, D. M.; Smith III, A. B., Carboxylic Acid
(Bio)Isosteres in Drug Design. ChemMedChem 2013, 8, 385-395.
(3) For reviews: (a) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S.
A.; Marder, T. B., Diboron(4) Compounds: From Structural Curiosity to
Synthetic Workhorse. Chem. Rev. 2016, 116, 9091-9161; (b)
Obligacion, J. V.; Chirik, P. J., Earth-Abundant Transition Metal Catalysts
for Alkene Hydrosilylation and Hydroboration. Nat. Rev. Chem. 2018, 2,
15-34; (c) Wen, Y.; Deng, C.; Xie, J.; Kang, X., Recent Synthesis
Developments of Organoboron Compounds via Metal-Free Catalytic
Borylation of Alkynes and Alkenes. Molecules 2018, 24, 101.
(4) For selected examples: (a) Shimada, S.; Batsanov, A. S.; Howard, J. A.
K.; Marder, T. B., Formation of Aryl- and Benzylboronate Esters by
Rhodium-Catalyzed C−H Bond Functionalization with Pinacolborane.
Angew. Chem., Int. Ed. 2001, 40, 2168-2171; (b) Larsen, M. A.; Wilson,
C. V.; Hartwig, J. F., Iridium-Catalyzed Borylation of Primary Benzylic C-
H Bonds without a Directing Group: Scope, Mechanism, and Origins of
Selectivity. J. Am. Chem. Soc. 2015, 137, 8633-8643; (c) Palmer, W. N.;
Obligacion, J. V.; Pappas, I.; Chirik, P. J., Cobalt-Catalyzed Benzylic
Borylation: Enabling Polyborylation and Functionalization of Remote,
Unactivated C(sp3)-H Bonds. J. Am. Chem. Soc. 2016, 138, 766-769; (d)
Palmer, W. N.; Zarate, C.; Chirik, P. J., Benzyltriboronates: Building
Blocks for Diastereoselective Carbon–Carbon Bond Formation. J. Am.
Chem. Soc. 2017, 139, 2589-2592; (e) Furukawa, T.; Tobisu, M.; Chatani,
N., C–H Borylation by Platinum Catalysis. Bull. Chem. Soc. Jpn 2017, 90,
332-342; (f) Oeschger, R.; Su, B.; Yu, I.; Ehinger, C.; Romero, E.; He, S.;
Hartwig, J., Diverse Functionalization of Strong Alkyl C-H Bonds by
Undirected Borylation. Science 2020, 368, 736-741.
(5) For selected examples: (a) Yang, C. T.; Zhang, Z. Q.; Tajuddin, H.; Wu,
C. C.; Liang, J.; Liu, J. H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.;
Liu, L., Alkylboronic Esters from Copper-Catalyzed Borylation of
Primary and Secondary Alkyl Halides and Pseudohalides. Angew.
Chem., Int. Ed. 2012, 51, 528-532; (b) Dudnik, A. S.; Fu, G. C., Nickel-
Catalyzed Coupling Reactions of Alkyl Electrophiles, Including
Unactivated Tertiary Halides, To Generate Carbon–Boron Bonds. J. Am.
Chem. Soc. 2012, 134, 10693-10697; (c) Atack, T. C.; Lecker, R. M.; Cook,
S. P., Iron-Catalyzed Borylation of Alkyl Electrophiles. J. Am. Chem. Soc.
2014, 136, 9521-9523; (d) Cao, Z.-C.; Luo, F.-X.; Shi, W.-J.; Shi, Z.-J.,
Direct Borylation of Benzyl Alcohol and Its Analogues in the Absence of
Bases. Org. Chem. Front. 2015, 2, 1505-1510; (e) Zarate, C.; Manzano,
(11) (a) Li, H.; Wang, L.; Zhang, Y.; Wang, J., Transition-Metal-Free
Synthesis of Pinacol Alkylboronates from Tosylhydrazones. Angew.
Chem., Int. Ed. 2012, 51, 2943-2946; (b) Li, H.; Shangguan, X.; Zhang, Z.;
Huang, S.; Zhang, Y.; Wang, J., Formal Carbon Insertion of N-
Tosylhydrazone into B–B and B–Si Bonds: gem-Diborylation and gem-
Silylborylation of sp3 Carbon. Org. Lett. 2014, 16, 448-451.
(12) (a) Fox, M. A.; Whitesell, J. K., Organic Chemistry. 3 ed.; Jones and
Bartlett Publishers: 2004; (b) Brown, W. H.; Iverson, B. L.; Anslyn, E.;
Foote, C. S., Organic Chemistry. 7 ed.; Cengage Learning: 2013.
(13) For book chapters and reviews: (a) Takeda, T., Modern Carbonyl
Olefination: Methods and Applications. John Wiley & Sons: 2006; (b)
Xiao, Q.; Zhang, Y.; Wang, J., Diazo Compounds and N-Tosylhydrazones:
Novel Cross-Coupling Partners in Transition-Metal-Catalyzed
Reactions. Acc. Chem. Res. 2013, 46, 236-247; (c) Xia, Y.; Wang, J., N-
Tosylhydrazones: Versatile Synthons in the Construction of Cyclic
Compounds. Chem. Soc. Rev. 2017, 46, 2306-2362; (d) Becker, M. R.;
Watson, R. B.; Schindler, C. S., Beyond Olefins: New Metathesis
Directions for Synthesis. Chem. Soc. Rev. 2018, 47, 7867-7881; For
selected examples: (e) Hong, K.; Morken, J. P., Catalytic Enantioselective
One-pot Aminoborylation of Aldehydes: A Strategy for Construction of
Nonracemic α-Amino Boronates. J. Am. Chem. Soc. 2013, 135, 9252-
9254; (f) Zhao, Z.; Kulkarni, K. G.; Murphy, G. K., Synthesis of
Aryldihalomethanes by Denitrogenative Dihalogenation of
8
ACS Paragon Plus Environment