M. Wang, B. S. J. Blagg / Tetrahedron Letters 49 (2008) 141–144
143
Coupling of acid 9 with homobenzylic alcohol 16 proved
difficult as the olefin underwent isomerization under the
majority of conditions that produced the ester product.
For example, when the more frequently used coupling
reagents were employed such as DCC/DMAP, EDCI/
DMAP, or oxalyl chloride/triethylamine, only the un-
desired (Z)-a-bromoacrylic ester 17 was obtained as
depicted in Eq. 3.
using a Still–Gennari reaction and a Mukayama
reagent-promoted lactamization as pivotal steps.
Construction of this 14-membered ring allows for incor-
poration of multiple functionalities that will enable
elucidation of structure–activity relationships between
chimeric compounds and Hsp90. Utilization of this scaf-
fold and biological evaluation of new Hsp90 inhibitory
scaffolds are now in progress and will be reported in
due course.
MeO
O
MeO
MeO
O
O
OMe
OH
OMe
Br
+
Br
HO
MeO
a, b, or c
Acknowledgment
NBoc
16 NBoc
9
Z-17
conditions: a) DCC/DMAP; b) EDCI/DMAP; c) (COCl)2/TEA
The authors gratefully acknowledge financial support of
this project by NIH CA109265.
ð3Þ
Instead of using standard coupling protocols, which
utilize the activated carboxylate as the electrophile, we
chose to reverse the reactive nature of these partners.
Under Mitsunobu conditions,15 homobenzylic alcohol
16 underwent smooth displacement by carboxylate 9 to
afford the corresponding ester (18) in high yield and
without isomerization of the double bond. Subsequent
chemoselective oxidation of the terminal olefin to the
requisite aldehyde (19) was accomplished via osmium-
mediated dihydroxylation,16 followed by oxidative
cleavage with sodium periodate.9 The aldehyde was
then oxidized to acid 20 under relatively neutral condi-
tions,9,17 before the t-butyl carbamate was removed
upon exposure to trifluoroacetic acid. The resulting ami-
no acid (21) was treated with various coupling reagents
that proved to be unproductive, as undesired compounds
represented the vast majority of products. However,
Mukayama’s reagent18,19 proved especially effective in
this transformation and in the presence of triethylamine,
the metacyclophane 14-membered macrolactam, 1,20 was
produced in exceptionally good yield (Scheme 3).
References and notes
1. Neckers, L. Trends Mol. Med. 2002, 8, S55–S61.
2. Blagg, B. S. J.; Kerr, T. D. Med. Res. Rev. 2006, 26, 310–
338.
3. Workman, P. Trends Mol. Med. 2004, 10, 47–51.
4. (a) Burlison, J. A.; Neckers, L. M.; Smith, A.; Maxwell,
A.; Blagg, B. S. J. J. Am. Chem. Soc. 2006, 128, 15529–
15536; (b) Yu, X.-M.; Shen, G.; Cronk, B.; Marcu, M.;
Holzberlein, J.; Neckers, L. M.; Blagg, B. S. J. J. Am.
Chem. Soc. 2005, 127, 12778–12779.
5. Andrus, M. B.; Hicken, E. J.; Meredith, E. L.; Simmons,
B. L.; Cannon, J. F. Org. Lett. 2003, 5, 3859–3862.
6. Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.;
Danishefsky, S. J. J. Am. Chem. Soc. 2001, 23, 10903–
10908.
7. Yamamoto, K.; Garbaccio, R. M.; Stachel, S. J.; Solit, D.
B.; Chiosis, G.; Rosen, N.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2003, 42, 1280–1284.
8. Geng, X.; Yang, Z.-Q.; Danishefsky, S. J. Synlett 2004, 8,
1325–1333.
9. (a) Wang, M.; Shen, G.; Blagg, B. S. J. Bioorg. Med.
Chem. Lett. 2006, 16, 2459–2462; (b) Shen, G.; Wang, M.;
Blagg, B. S. J. J. Org. Chem. 2006, 7618–7631.
10. Clevenger, R. C.; Blagg, B. S. J. Org. Lett. 2004, 6, 4459–
4462.
11. Shen, G.; Blagg, B. S. J. Org. Lett. 2005, 7, 2157–2160.
12. (a) Maryanoff, B. E.; Reitz, A. Chem. Rev. 1989, 89, 863–
927; (b) Semmelhack, M. F.; Brickner, S. J. J. Am. Chem.
Soc. 1981, 103, 3945; (c) Danishefsky, S.; Chackalamannil,
S.; Harrison, P.; Silvestri, M.; Cole, P. J. Am. Chem. Soc.
1985, 107, 3474.
OMe
O
MeO
DIAD/PPh3
0 oC, 92%
Br
1) OsO4/NMO
2) NaIO4
O
16
+
9
OMe
18
79% over
2 steps
NBoc
OMe
O
O
OMe
O
NaClO2
NaH2PO4
MeO
Br
MeO
Br
O
13. McKenna, C. E.; Khawli, L. A. J. Org. Chem. 1986, 51,
5467.
95%
OMe
OMe
14. Tago, K.; Kogen, H. Tetrahedron 2000, 56, 8825–8831.
15. (a) Mitsunobu, O. Synthesis 1981, 1; (b) Hughes, D. L.
Org. React. 1992, 42, 335–656.
16. Tan, Q.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2000,
112, 4683.
17. Yang, Z.; He, Y.; Vourloumis, H.; Nicolaou, K. C.
Angew. Chem., Int. Ed. 1997, 109, 170.
18. Mukayama, T.; Usui, M.; Saigo, K. Chem. Lett. 1975,
1045.
20
HOOC
19
OHC
NBoc
NBoc
I
OMe
NH3
O
MeO
Br
O
N
Cl
TFA
90%
Me
1
OMe
Et3N
86%
21
O2C
Scheme 3.
19. Nicolaou, K. C.; Bunnage, M. E.; Koide, K. J. Am. Chem.
Soc. 1994, 116, 8402.
20. Compound 1 was prepared and fully characterized as
described below: to a mixture of 21 (246 mg, 0.57 mmol)
and Et3N in ClCH2CH2Cl (300 mL) was slowly added 2-
chloro-1-methylpyridinium iodide (220 mg, 0.86 mmol).
The mixture was stirred for 20 h at rt. The solvent was
2. Conclusion
In this Letter, a highly diversifiable a-bromo-a,b-unsat-
urated metacyclophane macrolactam has been prepared