Catalytic Hydroalkoxylation
985
Table 3. Conversion of acrylonitrile in the reaction with phenol using
microwave irradiation and in the presence of different solvents
[6] F. Shi, H. Xiong, Y. Gu, S. Guo, Y. Deng, Chem. Commun. 2003, 1054.
[7] W. Kiatkittipong, K. Yoothongkham, C. Chaisuk, P. Praserthdam,
S. Goto, S. Assabumrungrat, Catal. Lett. 2009, 128, 154. doi:10.1007/
[8] W. J. Piel, Fuel Reformulation 1994, 4, 28.
[9] H. L. Brockwell, P. R. Sarathy, R. Trotta, Hydrocarbon Process. 1991,
70, 133.
Solvent
Toluene
Time [min]
Conversion [%]
15
30
15
30
15
30
0
0
DMF
38
72
28
50
[10] H. M. Sheldrake, C. Jamieson, J. W. Burton, Angew. Chem., Int. Ed.
DMSO
[11] D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F.
[13] D. F. Shellhamer, H. K. Forberg, M. P. Herrick, S. J. Rodrigued,
S. Sanabria, N. N. Trager, V. L. Heasley, Trends Org. Chem. 2008,
12, 39.
constant (e , 4) than MA (e ¼ 7.03), EA (e ¼ 6.5), and AN
(e ¼ 33.0). According to the value of dielectric constants, we
expected a higher conversion for the reaction of methanol with
acrylonitrile as shown in Table 2. No products were found when
alcohols were reacted with IBVE due to the very low dielectric
constant of IBVE. Phenol was unreactive under our experimen-
tal conditions when toluene was used as the solvent.
[14] Z. Li, J. Zhang, C. Brouwer, C. G. Yang, N. W. Reich, C. He, Org. Lett.
[15] P. Lemechko, F. Grau, S. Antoniotti, E. Dunach, Tetrahedron Lett.
[16] D. S. Noyce, K. E. DeBruin, J. Am. Chem. Soc. 1968, 90, 372.
To investigate the solvent effect on the reaction of phenol
with acrylonitrile, we repeated this reaction in the presence of
DMSO and DMF. As shown in Table 3, the higher dielectric
constants of DMSO (e ¼ 46.7) and DMF (e ¼ 36.7) have a
positive effect on the reaction reactivity. So, for the first time,
we achieved the acceptable conversion for this reaction using a
simple microwave method.
[17] L. R. Fedor, N. C. De, S. K. Gurwara, J. Am. Chem. Soc. 1973, 95,
[18] J. L. Jensen, D. J. Carre, J. Org. Chem. 1974, 39, 2103. doi:10.1021/
[19] R. P. Bell, J. Preston, J. Chem. Soc. 1962, 1166. doi:10.1039/
[20] I. C. Stewart, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc. 2003, 125,
[21] P. B. Kisanga, P. Ilankumaran, B. M. Fetterly, J. G. Verkade, J. Org.
[22] F. Collignon, G. Poncelet, J. Catal. 2001, 202, 68. doi:10.1006/JCAT.
[23] L. Coulombel, E. Dunach, Green Chem. 2004, 6, 499. doi:10.1039/
[24] B. Wang, Y. Gu, L. Yang, J. Suo, O. Kenichi, Catal. Lett. 2004, 96, 71.
Conclusions
Pollucite is an active heterogeneous catalyst for hydroalk-
oxylation of activated alkenes such as AN, MA, EA, and IBVE
with alcohols. The activity of this catalyst, unlike other basic
solids, was scarcely affected by the presence of air or moisture.
The reaction activity in addition to the catalyst basicity were
affected by the alcohol acidity. So, the highest conversions were
observed for the reaction of methanol with alkenes. On the other
hand, acrylates show higher conversion in comparison with
IBVE when linear alcohols were used, but the heavier alcohols,
such as cyclohexanol, 2-ethylhexanol, and phenol, showed
higher reactivity with IBVE with respect to the acrylates.
The SEM images of all the catalysts showed particles with
sizes of ,50 nm. Using microwave irradiation, the reaction
times of chosen alkenes with different alcohols were reduced to
30 min with good yields in the presence of pollucite.
[25] J. R. Chamberlain, U. S. Patent 5 008 136 1991.
[26] J. D. Unruh, C. Christi, U. S. Patent 5 081 285 1992.
[27] B. T. Keen, U. S. Patent 4 948 915 1990.
[28] C. Munro-Leighton, E. D. Blue, T. B. Gunnoe, J. Am. Chem. Soc. 2006,
[29] C. Munro-Leighton, S. A. Delp, E. D. Blue, T. B. Gunnoe, Organo-
[30] R. Corberan, S. Marrot, N. Dellus, N. Merceron-Saffon, T. Kato,
E. Peris, A. Baceiredo, Organometallics 2009, 28, 326. doi:10.1021/
[31] T. J. Gallagher, J. Chem. Soc., Chem. Commun. 1984, 1554.
[32] C. G. Yang, C. He, J. Am. Chem. Soc. 2005, 127, 6966. doi:10.1021/
[33] I. Kamiya, H. Tsunoyama, T. Tsukuda, H. Sakurai, Chem. Lett. 2007,
Supplementary Material
Mass spectra and a GC chromatogram are available on the
Journal’s website.
[35] F. Volz, N. Krause, Org. Biomol. Chem. 2007, 5, 1519. doi:10.1039/
Acknowledgement
The authors gratefully acknowledge financial support from the University of
Tehran.
[36] T. Hirai, A. Hamasaki, A. Nakamura, M. Tokunaga, Org. Lett. 2009,
References
[37] C. S. Yi, S. Y. Yun, Z. He, Organometallics 2003, 22, 3031.
[38] K. Hori, H. Kitagawa, A. Miyoshi, T. Ohta, I. Furukawa, Chem. Lett.
[1] M. B. Smith, J. March, March’s Advanced Organic Chemistry 2001
(Academic Press: John Wiley & Sons: New York, NY).
[2] K. Maeda, H. Shinokubo, K. Oshima, J. Org. Chem. 1996, 61, 6770.
[3] G. J. Hatchings, C. P. Nicolaides, M. S. Scurrel, Catal. Today 1992, 15,
[39] T. Kawamoto, S. Hirabayashi, X. X. Guo, T. Nishimura, T. Hayashi,
[40] T. Hosokawa, T. Shinohara, Y. Ooka, S. I. Murahashi, Chem. Lett.
[4] K. P. de Jong, W. Bosch, T. D. B. Morgan, Stud. Surf. Sci. Catal. 1995,
[41] K. J. Miller, T. T. Kitagawa, Organometallics 2001, 20, 4403.
[5] S. Gao, J. B. Moffat, Catal. Lett. 1996, 42, 105. doi:10.1007/