Notes and references
1 (a) F. Q. Alali, X. X. Liu and J. L. McLaughlin, J. Nat. Prod., 1999, 62,
504; (b) A. Bermejo, B. Figade`re, M. C. Zafra-Polo, I. Barrachina,
E. Estornell and D. Cortes, Nat. Prod. Rep., 2005, 22, 269.
2 (a) M. A. Bla´zquez, A. Bermejo, M. C. Zafra-Polo and D. Corte´s,
Phytochem. Anal., 1999, 10, 161; (b) J.-P. Surivet and J.-M. Vate`le,
Tetrahedron, 1999, 55, 13011.
3 Y. C. Wu, C. Y. Duh, F. R. Chang, G. Y. Chang, S. K. Wang,
J. J. Chang, D. R. McPhail, A. T. McPhail and K. H. Lee, J. Nat.
Prod., 1991, 54, 1077.
4 (a) S. K. Talapatra, D. Basu, T. Deb, S. Goswami and B. Talapatra,
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1985, 24, 29; (b)
S. H. Goh, G. C. L. Ee, C. H. Chuah and C. Wei, Aust. J. Chem., 1995,
48, 199.
5 T. W. Sam, C. S. Yeu, S. Matsjeh, E. K. Gan, D. Razak and
A. L. Mohamed, Tetrahedron Lett., 1987, 28, 2541.
6 (a) A. A. E. El-Zayat, N. R. Ferrigni, T. G. McCloud, A. T. McKenzie,
S. R. Byrn, J. M. Cassady, C.-j. Chang and J. L. McLaughlin,
Tetrahedron Lett., 1985, 26, 955; (b) A. Alkofahi, W.-W. Ma,
A. T. McKenzie, S. R. Byrn and J. L. McLaughlin, J. Nat. Prod.,
1989, 52, 1371; (c) X.-P. Fang, J. E. Anderson, C.-J. Chang,
P. E. Fanwick and J. L. McLaughlin, J. Chem. Soc., Perkin Trans. 1,
1990, 1655; (d) X.-P. Fang, J. E. Anderson, C.-J. Chang,
J. L. McLaughlin and P. E. Fanwick, J. Nat. Prod., 1991, 54, 1034;
(e) X.-P. Fang, J. E. Anderson, C.-j. Chang and J. L. McLaughlin,
Tetrahedron, 1991, 47, 9751; (f) Y.-C. Wu, F.-R. Chang, C.-Y. Duh,
S.-K. Wang and T.-S. Wu, Phytochemistry, 1992, 31, 2851; (g)
X.-p. Fang, J. E. Anderson, X. X. Qiu, J. F. Kozlowski, C.-j. Chang
and J. L. McLaughlin, Tetrahedron, 1993, 49, 1563; (h) H. B. Mereyala
and M. Joe, Curr. Med. Chem. Anti-Cancer Agents, 2001, 1, 293.
7 (a) R. I. Geran, N. H. Greenberg, M. M. MacDonald, A. M. Scumacher
and B. J. Abbott, Cancer Chemother. Rep., 1972, 3, 1; (b) M. Lo´pez-
La´zaro, C. Mart´ın-Cordero, A. Bermejo, D. Corte´s and M. J. Ayuso,
Anticancer Res., 2001, 21, 3493.
Scheme 4 Reagents and conditions: (a) Ph3CBF4, CH2Cl2, 25 uC, 30 s,
95%; (b) CBr4, MeOH, 65 uC, 12 h, 85%; (c) t-BuOOH–VO(acac)2, C6H6,
0–25 uC, 10 h, 80%; (d) DBU, CHCl3, 25 uC, 0.5 h, 84%.
8 (a) T. K. M. Shing and H.-C. Tsui, J. Chem. Soc., Chem. Commun.,
1992, 432; (b) T. K. M. Shing, H.-C. Tsui and Z.-H. Zhou, J. Chem.
Soc., Chem. Commun., 1992, 810; (c) T. K. M. Shing, H.-C. Tsui and
Z.-H. Zhou, Tetrahedron, 1992, 48, 8659; (d) T. Gracza and V. Ja¨ger,
Synlett, 1992, 191; (e) T. Gracza and V. Ja¨ger, Synthesis, 1994, 1359.
9 T. K. M. Shing, H.-C. Tsui and Z.-H. Zhou, Tetrahedron Lett., 1993,
34, 691.
10 (a) For a review on the syntheses of styryllactones up till 2004, see:
M. Mondon and J.-P. Gesson, Curr. Org. Synth., 2006, 3, 175; (b)
P. Ruiz, J. Murga, M. Carda and J. A. Marco, J. Org. Chem., 2005, 70,
713; (c) K. R. Prasad and S. L. Gholap, Synlett, 2005, 3018; (d)
M. D. Mihovilovic, D. A. Bianchi and F. Rudroff, Chem. Commun.,
2006, 3214; (e) V. Popsavin, B. Sreco, I. Krstic, M. Popsavin, V. Kojic
and G. Bogdanovic, Eur. J. Med. Chem., 2006, 41, 1217; (f) R. F. de
la Pradilla, J. Fernandez, A. Viso, J. Fernandez and A. Gomez,
Heterocycles, 2006, 68, 1579; (g) S.-M. Cristhian, C.-G. Silvano,
Q. Leticia and S.-P. Fernando, Lett. Org. Chem., 2006, 3, 504; (h)
K. R. Prasad and S. L. Gholap, jo0702342.
Scheme 5 Reagents and conditions: (a) p-methoxybenzyl bromide, NaH,
THF, 0–25 uC, 6 h, 91%; (b) 5 : 2 AcOH–H2O, 50 uC, 4 h, 99%; (c)
TBDPSCl, imidazole, CH2Cl2, 0–25 uC, 12 h, 73%; (d) vinylacetic acid,
DCC, DMAP, CH3CN, 0–25 uC, 8 h, 78%; (e) 5 mol% Grubbs’ 2nd
generation catalyst, C6H6, 80 uC, 10 h, 85%; (f) Ph3CBF4, CH2Cl2, 25 uC,
5 min, 94.5%; (g) m-CPBA, CH2Cl2, 45 uC, 24 h, 96%; (h) (i) DBU,
CHCl3, 25 uC, 24 h, 82%; (ii) TBAF, AcOH, THF, 0 uC, 5 min, 99%.
The synthesis of (+)-goniofufurone 1 from 10 by following
the steps outlined in Scheme 3 was problematic for achieving
epoxidation of the species equivalent to 15. However, PMB-
cleavage before epoxidation worked well as shown in Scheme 5.
The key intermediate 28 rearranged to (+)-goniofufurone 1 after
DBU-treatment and desilylation, in that order. The spectral and
physical properties of synthetic (+)-goniofufurone 1 were identical
to those reported in the literature.6c
11 D. A. Jeyaraj, K. K. Kapoor, V. K. Yadav, H. M. Gauniyal and
M. Parvez, J. Org. Chem., 1998, 63, 287.
12 D. Agrawal, V. Sriramurthy and V. K. Yadav, Tetrahedron Lett., 2006,
47, 7615.
13 Gracza has demonstrated previously the feasibility of preparation of
either carbinol with high stereoselectivity. M. Babjek, P. Kapita´n and
T. Gracza, Tetrahedron, 2005, 61, 2471.
14 L. F. Wiggins, J. Chem. Soc., 1946, 13.
15 P. J. Garegg and B. Samuelsson, Synthesis, 1979, 469.
16 P. Saravanan, M. Chandrashekhar, R. V. Anand and V. K. Singh,
Tetrahedron Lett., 1998, 39, 3091.
17 Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982,
23, 889.
18 A. Orita, G. Uehara, K. Miwa and J. Otera, Chem. Commun., 2006,
4729.
19 D. H. R. Barton, P. D. Magnus, G. Smith, G. Streckert and D. Zurr,
J. Chem. Soc., Perkin Trans. 1, 1972, 542.
20 A. S.-Y. Lee, H.-C. Yeh and J.-J. Shie, Tetrahedron Lett., 1998, 39,
5249.
21 (a) J.-P. Surivet and J.-M. Vate`le, Tetrahedron Lett., 1997, 38, 819; (b)
T. K. M. Shing, H.-C. Tsui and Z.-H. Zhou, J. Org. Chem., 1995, 60,
3121.
In summary, we have achieved the total syntheses of (+)-7-epi-
goniofufurone, (+)-goniopypyrone and (+)-goniofufurone from a
common precursor simply by changing the sequence of carbinol
protection and thus allowing the formation of either a c-lactone
or a d-lactone in the first step of the rearrangement that
leads to further ring closure to generate, respectively, the
bicyclo[3.3.0] skeleton of goniofufurones or the [3.3.1] skeleton of
goniopypyrone.
V.K.Y. thanks the Department of Science & Technology for a
Ramanna Fellowship and D.A. thanks the Council of Scientific &
Industrial Research for a Senior Research Fellowship.
5234 | Chem. Commun., 2007, 5232–5234
This journal is ß The Royal Society of Chemistry 2007