cosmetics, and insecticides.10a-i,11,12 Moreover, coumarins find
application as dyes in laser technology, fluorescent indicators,
optical brighteners, and photosensitizers.10a,13
The first experiments were carried out with 2-(hydroxyprop-
2-ynyl)phenol 4a, which was initially allowed to react under
TABLE 1. Reactions of 2-(Hydroxyprop-2-ynyl)phenol 4a with CO
and MeOH in the Presence of the PdI2-KI Catalytic System in
MeOH as the Solvent
4a/KI/PdI2
T
PCO
t
convn of yield of yield of
entry molar ratio (°C) (atm) (h) 4aa (%) 2ab (%) 5ab (%)
1c
100:100:1 100
100:100:1 100
30
60
60
60
60
60
60
60
60
60
90
15
15
1
2
2
2
2
2
2
100
100
90
81
65
63
90
100
35
20
(58)
(35)
20
10
8
(27)
(48)
53
58
46
49
65
60
19
2c
(7) For some very recent developments in the synthesis of coumarins,
see: (a) Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069-3072. (b)
Valizadeh, H.; Shockravi, A.; Gholipur, H. J. Heterocycl. Chem. 2007, 44,
867-870. (c) Shi, Y. L.; Shi, M. Org. Biomol. Chem. 2007, 5, 1499-
1504. (d) Kumar, S.; Saini, A.; Sandhu, J. S. ArkiVok 2007, 18-23. (e)
Selvakumar, S.; Chidambaram, M.; Singh, A. P. Catal. Commun. 2007, 8,
777-783. (f) Reddy, B. M.; Patil, M. K.; Lakshmanan, P. J. Mol. Catal.
A:Chem. 2006, 256, 290-294. (g) Maheswara, M.; Siddaiah, V.; Damu,
G. L. V.; Rao, Y. K.; Rao, C. V. J. Mol. Catal. A:Chem. 2006, 255, 49-
52. (h) Baldoumi, V.; Gautam, D. R.; Litinas, K. E.; Nicolaides, D. N.
Tetrahedron 2006, 62, 8016-8020. (i) Oyamada, J.; Kitamura, T. Tetra-
hedron 2006, 62, 6918-6925. (j) Manhas, M. S.; Ganguly, S. N.;
Mukherjee, A. K. J.; Bose, A. K. Tetrahedron Lett. 2006, 47, 2423-2425.
(k) Liu, Y.; Mills, A. D.; Kurth, M. J. Tetrahedron Lett. 2006, 47, 1985-
1988. (l) Santana, L.; Uriarte, E.; Gonzalez-Diaz, H.; Zagotto, G.; Soto-
Otero, R.; Mendez-Alvarez. E J. Med. Chem. 2006, 49, 1149-1156.
(8) Only a few transition metal-catalyzed approaches to the synthesis of
coumarins have been reported. For representative examples, see ref 9 and:
(a) Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125,
4518-4526. (b) Rayabarapu, D. K.; Sambaiah, T.; Cheng, C.-H. Angew.
Chem., Int. Ed. 2001, 40, 1286-1288. (c) Jia, C.; Piao, D.; Kitamura, T.;
Fujiwara, Y. Science 2000, 287, 1992-1995. (d) Trost, B. M.; Toste, F. D.
J. Am. Chem. Soc. 1996, 118, 6305-6306. (e) Catellani, M.; Chiusoli, G.
P.; Fagnola, M. C.; Solari, G. Tetrahedron Lett. 1994, 35, 5919-5922.
(9) To our knowledge, only very few reports on coumarin synthesis by
a direct carbonylation approach have appeared in the literature so far: (a)
Cao, H.; Xiao, W. J. Can. J. Chem. 2005, 83, 826-831. (b) Kadnikov, D.
V.; Larock, R. C. J. Org. Chem. 2003, 68, 9423-9432. (c) Yoneda, E.;
Sugioka, T.; Hirao, K.; Zhang, S. W.; Takahashi, S. J. Chem. Soc., Perkin
Trans. 1 1998, 477-483. (d) Catellani, M.; Chiusoli, G. P.; Fagnola, M.
C.; Solari, G. Tetrahedron Lett. 1994, 35, 5923-5926. None of these
methods, however, led to 3-[(alkoxycarbonyl)methyl]coumarins by direct
dicarbonylation of acyclic substrates.
3c
100:100:1
100:100:1
200:100:1
200:100:1
200:100:1
200:100:1
200:10:1
60
25
25
25
40
60
25
25
25
4c
5c
6d
7d
8d
9d
10d
11d
5
20
28
9
5
6
200:200:1
200:100:1
2
2
13
62
75
a Determined by GLC. b GLC yield (isolated yield) based on 4a.
c Substrate concentration was 0.22 mmol/mL of MeOH. d Substrate con-
centration was 0.50 mmol/mL of MeOH.
conditions similar to those previously used for the conversion
of (2-allyloxyphenyl)-2-yn-1-ols 1 into 2-benzofuran-2-ylacetic
esters 2 (PdI2 as the catalyst in conjunction with an excess of
KI, 4a/KI/PdI2 molar ratio ) 100:100:1, in MeOH as the solvent
at 100 °C and under 30 atm of CO). After 15 h, a mixture of
carbonylated products, that is, the benzofuran-2-acetic methyl
ester 2a (58% isolated yield) together with 3-[(methoxycarbo-
nyl)methyl]coumarin 5a (27% isolated yield), was obtained at
total substrate conversion (eq 3 and Table 1, entry 1).
(10) (a) Murray, R. D. H.; Me´ndez, J.; Brown, S. A. The Natural
Coumarins: Occurrence, Chemistry, and Biochemistry; Wiley: New York,
1982. (b) Coumarins: Biology, Applications, and Mode of Action;
O’Kennedy, R., Thornes, R. D., Eds.; John Wiley & Sons: New York,
1997. (c) Murray, R. D. H. Prog. Chem. Org. Nat. Prod. 2002, 83, 1-673.
(d) Kulkarni, M. V.; Kulkarni, G. M.; Lin, C. H.; Sun, C. M. Curr. Med.
Chem. 2006, 13, 2795-2818. (e) Kostova, I. Curr. HIV Res. 2006, 4, 347-
363. (f) Kostova, I. Mini-ReV. Med. Chem. 2006, 6, 365-374. (g) Borges,
F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem.
2005, 12, 887-916. (h) Lacy, A.; O’, Kennedy, R. Curr. Pharm. Design
2004, 10, 3797-3811. (i) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natscke, S.
L.; Lee, K.-H. Med. Res. ReV. 2003, 23, 322-345. (j) Trenor, S. R.; Shultz,
A. R.; Love, B. J.; Long, T. E. Chem. ReV. 2004, 104, 3059-3077.
(11) For very recent examples on the pharmacological activity of
coumarins, see: (a) Jacquot, Y.; Laios, L.; Cleeren, A.; Nonclercq, D.;
Bermont, L.; Refouvelet, B.; Boubekeur, K;, Xicluna, A.; Leclercq, G.;
Laurent, G. Bioorg. Med. Chem. Lett. 2007, 15, 2269-2282. (b) Hadji-
pavlou-Litina, D.; Kontogiorgis, C.; Pontiki, E.; Dakanali, M.; Akoumianaki,
A.; Katerinopoulos, H. E. J. Enzym. Inhib. Med. Ch. 2007, 22, 287-292.
(c) Ruiz-Marcial, C.; Chilpa, R. R.; Estrada, E.; Reyes-Esparza, J.; Farina,
G. G.; Rodriguez-Fragoso, L. J. Pharm. Pharmacol. 2007, 59, 719-725.
(d) Garazd, M. M.; Muzychka, O. V.; Vovk, A. I.; Nagorichna, I. V.;
Ogorodniichuk, A. S. Chem. Nat. Compd. 2007, 43, 19-23. (e) Zhang, Q.
Y.; Qin, L. P.; He, W. D.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng,
H. C.; De Kimpe, N. Planta Med. 2007, 73, 13-19.
(12) For recent examples on the pharmacological activity of [(3-
alkoxycarbonyl)methyl]coumarins, see: (a) Patterson, A. W.; Wood, W. J.
L.; Hornsby, M.; Lesley, S.; Spraggon, G.; Ellman, J. A. J. Med. Chem.
2006, 49, 6298-6307. (b) Wood, J. L.; Patterson, A. W.; Tsuruoka, H.;
Jain, R. K.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 15521-15527. (c)
Raj, H. G.; Parmar, V. S.; Jain, S. C.; Goel, S.; Himanshu, P.; Malhotra,
S.; Singh, A.; Olsen, C. E.; Wengel, J. Bioorg. Med. Chem. 1998, 6, 833-
839. (d) Raj, H. G.; Gupta, S.; Biswas, G.; Singh, S.; Singh, A.; Jha, A.;
Bisht, K. S.; Sharma, S. K.; Jain, S. C.; Parmar, V. S. Bioorg. Med. Chem.
1996, 4, 2225-2228.
Formation of the coumarin derivative was not observed in
the case of (2-allyloxyaryl)-2-yn-1-ols 1, bearing an internal
triple bond.1 Evidently, in the case of substrate 4a, bearing a
terminal triple bond, a second reaction route, corresponding to
dicarbonylation to give coumarin 5a, becomes competitive with
the heterocyclization-alkoxycarbonylation route leading to
benzofurans. This is in agreement with what we have already
observed in other PdI2-catalyzed carbonylation reactions of
alkynes, namely, that usually only terminal triple bonds undergo
PdI2-catalyzed dicarbonylation.14 Formation of the coumarin
derivative may occur through two different pathways (Scheme
2, anionic iodide ligands are omitted for clarity).15 The first
possibility (path a) corresponds to triple-bond insertion into the
Pd-C bond of a phenoxycarbonylpalladium intermediate fol-
lowed by alkoxycarbonylation. Alternatively, triple-bond inser-
tion into the Pd-C bond of a methoxycarbonylpalladium species
may occur, followed by CO insertion and intramolecular
nucleophilic displacement (path b). In either case, intermediate
6 and an H-Pd-I complex are formed, which, according to a
known reactivity,1,16 react to afford an allylpalladium intermedi-
ate with elimination of water. Protonolysis of the allylpalladium
(13) See, for example: (a) Zabradnik, M. The Production and Application
of Fluorescent Brightening Agents; John Wiley & Sons: New York, 1992.
(b) Sekar, N. Colourage 2003, 50, 55-56. (c) Maeda, M. Laser Dyes;
Academic Press: New York, 1984. (d) Brun, M.-P.; Bischoff, L.; Garbay,
C. Angew. Chem., Int. Ed. 2004, 43, 3432-3436.
J. Org. Chem, Vol. 73, No. 2, 2008 757