C O M M U N I C A T I O N S
Table 2. Reduction of Functionalized Amidesa
In conclusion, a highly chemoselective metal-free reduction of
tertiary amides has been developed. As was demonstrated in the
chemoselective synthesis of donepezil, we believe this could find
great interest in the synthesis of highly functionalized molecules
and especially in the synthesis of natural products. Efforts are
actually directed toward the extension of this methodology to
secondary amides, and the results will be reported in due course.
Acknowledgment. This work was supported by NSERC
(Canada), the Canada Research Chairs Program, the Canadian
Foundation for Innovation, and the Universite´ de Montre´al. G.B.
thanks NSERC (ES D) and Boehringer Ingelheim (Canada) Ltd.
for postgraduate fellowships.
Supporting Information Available: Experimental details and
spectroscopic data (PDF). This material is available free of charge via
References
(1) Seyden-Penne, J. Reductions by the Alumino and Borohydrides in Organic
Synthesis, 2nd ed.; Wiley: New York, 1997.
(2) (a) Ohta, T.; Kamiya, M.; Nobutomo, M.; Kusui, K.; Furukawa, I. Bull.
Chem. Soc. Jpn 2005, 78, 1856-1861. (b) Kuwano, R.; Takahashi, M.;
Ito, Y. Tetrahedron Lett. 1998, 39, 1017-1020. (c) Motoyama, Y.; Mitsui,
K.; Ishida, T.; Nagashima, H. J. Am. Chem. Soc. 2005, 127, 13150-
13151. (d) Igarashi, M.; Fuchikami, T. Tetrahedron Lett. 2001, 42, 1945-
1947. (e) Hanada, S.; Motoyama, Y.; Nagashima, H. Tetrahedron Lett.
2006, 47, 6173-6177. (f) Fernandes, A. C.; Romao, C. C. J. Mol. Catal.
A 2007, 272, 60-63. (g) Selvakumar, K.; Rangareddy, K.; Harrod, J. F.
Can. J. Chem. 2004, 82, 1244-1248.
(3) (a) Charette, A. B.; Grenon, M. Can. J. Chem. 2001, 79, 1694-1703 and
references therein. (b) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf,
M.; Martel, J. J. Am. Chem. Soc. 2001, 123, 11829-11830.
(4) (a) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007,
129, 10096-10097. (b) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc.
2006, 128, 14254. (c) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc.
2006, 128, 4592.
a All reactions were performed on 1 mmol of amide. b No column
chromatography required.
Scheme 1. Chemoselective Synthesis of Donepezil
(5) (a) Lavilla, R. J. Chem. Soc., Perkin Trans. 1 2002, 1141-1156. (b) Stout,
D. M. Chem. ReV. 1982, 82, 223-243. (c) Eisner, U.; Kuthan, J. Chem.
ReV. 1972, 72, 1-42.
(6) (a) Yang, J. W.; Hechavarria Fonseca, M. T.; Vignola, N.; List, B. Angew.
Chem., Int. Ed. 2005, 44, 108-110. (b) Ouellet, S. G.; Tuttle, J. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32-33. (c) Mayer,
S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193-4195. (d) Tuttle, J.
B.; Ouellet, S. G.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128,
12662-12663. (e) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006,
128, 13368-13369. (f) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann,
T.; Bolte, M. Org. Lett. 2005, 7, 3781-3783. (g) Hoffmann, S.; Seayad,
A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424-7427. (h) Storer,
R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc.
2006, 128, 84-86. (i) Hoffmann, S.; Nicoletti, N.; List, B. J. Am. Chem.
Soc. 2006, 128, 13074-13075. (j) Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683-3686. (k) Rueping,
M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45,
6751-6755.
piperidine moiety, we minimized both the steric and electronic
influence of the functional group on the reaction. We were delighted
to find that, under our reaction conditions, a ketone (entry 1), esters
(entries 2-4), an R,â-unsaturated ester (entry 4), a nitrile (entry
5), an epoxide (entry 6), an alkyne (entry 7), and ethers (entries
5-7) were all tolerated, providing the corresponding amines in
moderate to excellent yields. It should be noted that, in all of these
cases, none of the reduced functionalities could be observed, thereby
demonstrating the high chemoselectivity of the reduction process.
A demonstration of the synthetic potential is shown in Scheme
1. Donepezil (5), an acetylcholine esterase inhibitor used for the
management of Alzheimer’s disease, was marketed in the U.S. as
Aricept (donepezil hydrochloride) in 1996.12 It was originally
synthesized from 4 via a debenzoylation/benzylation sequence.13
This two-step process can now be reduced to a single step of amide
reduction, providing donepezil (5) in 49% yield without the
necessity of a flash chromatography. It is also noteworthy that the
presence of the amide functionality results in crystalline material
for all of the donepezil synthetic intermediates.
(7) Unlike other reagents that were screened (e.g., POCl3, (COCl)2, Et3+OBF4-),
Tf2O reacts rapidly (<5 min) and is not substrate-dependent.
(8) A small excess is necessary due to some HEH decomposition in the
reaction conditions: (a) van Bergen, T. J.; Mulder, T.; Kellogg, R. M. J.
Am. Chem. Soc. 1976, 98, 1960-1962. (b) van Bergen, T. J.; Kellogg, R.
M. J. Am. Chem. Soc. 1976, 98, 1962-1964.
(9) See Supporting Information for more details.
(10) Other solvents such as MTBE, Et2O, THF, or toluene led to low conversion
due to low solubility of the iminium triflate and HEH.
(11) Akamatsu, H.; Kusumoto, S.; Fukase, K. Tetrahedron Lett. 2002, 43,
8867-8869 and references therein.
(12) (a) Roberson, E. D.; Mucke, L. Science 2006, 781-784. (b) Melnikova,
I. Nat. ReV. Drug DiscoVery 2007, 6, 341-342.
(13) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. J. Med. Chem.
1995, 38, 4821-4829.
JA077463Q
9
J. AM. CHEM. SOC. VOL. 130, NO. 1, 2008 19