Table 1. Screening Click Ligands in the Rhodium-Catalyzed
Asymmetric Hydrogenation of Enamide 9
Our application of click chemistry to ligand scaffold
construction is shown in Figure 1. The 2-, 3-, and 4-hydroxy-
entry
CL8
% yield
% ee
1
2
3
4
5
6
8ia
8ib
8iia
8iib
8iiia
8iiib
99
99
97
83
30
52
88
96
95
89
91
85
run under a standard set of reaction conditions (30 psi H2,
DCM, rt, 20 h). Each click ligand affords the secondary
amine derivative (S)-10 with enantiomeric excesses ranging
from 85% (entry 6, CL8iiib) to 96% (entry 2, CL8ib). In
addition to the variation in enantiomeric excess, we find the
degree of conversion obtained under these standard reaction
conditions varies as a function of the ligand scaffold. The
chemical yield of (S)-10 varies from 30% (entry 5, CL8iiia)
to near-quantitative (entries 1 and 2, CL8ia and CL8ib).
Click ligands CL8ib (99%, 96% ee) and CL8iia (97% yield,
95% ee) give the overall most promising results.
Figure 1. Facile, modular route to novel ligand scaffolds via click
chemistry.
phenyl azides 4i-iii are coupled with the 3- and 4-(hy-
droxymethyl)phenyl acetylenes (5a,b) to afford the six
isomeric diols represented by structure 6. Coupling each of
the diols with phosphorus trichloride and (R)-tetramethyl-
2,2′-bisphenol10 (7) affords a set of isomeric click ligands
CL8. These chiral diphosphites differ only with respect to
the structure of the ligand scaffold.
There are four potential ligating sites in CL8ib (Figure
2) raising questions as to whether it functions as a P,N- or
Asymmetric hydrogenation is a common testing ground
for evaluating new ligand designs,11 and the six diphosphites
were used in conjunction with Rh(nbd)2(BF4) to effect the
hydrogenation of enamide 9 (Table 1).12 The reactions were
(6) (a) Suijkerbuijk, B. M. J. M.; Aerts, B. N. H.; Dijkstra, H. P.; Lutz,
M.; Spek, A. L.; van Koten, G.; Klein Gebbink, R. J. M. Dalton Trans.
2007, 1273-1276. (b) Bastero, A.; Font, D.; Pericas, M. A. J. Org. Chem.
2007, 72, 2460-2468. (c) Mindt, T. L.; Struthers, H.; Brans, L.; Anguelov,
T.; Schweinsberg, C.; Maes, V.; Tourwe, D.; Schibli, R. J. Am. Chem. Soc.
2006, 128, 15096-15097. (d) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.;
Fokin, V. V. Org. Lett. 2004, 6, 2853-2855.
(7) (a) Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Org. Lett. 2005, 7, 4907-
4910. (b) Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M.; Zhang, X. J. Org. Chem.
2006, 71, 3928-3934. (c) See also: Fukuzawa, S.-i.; Oki, H.; Hosaka, M.;
Sugasawa, J.; Kikuchi, S. Org. Lett. 2007, 9, 5557-5560.
Figure 2. Diminished reactivity and enantioselectivity with triazole
monophosphites 11 and 12 suggests that both phosphite moieties
in CL8ib are involved in the active catalyst.
(8) Detz, R. J.; Arevalo Heras, S.; De Gelder, R.; Van Leeuwen, P. W.
N. M.; Hiemstra, H.; Reek, J. N. H.; Van Maarseveen, J. H. Org. Lett.
2006, 8, 3227-3230.
P,P-ligand, or perhaps a tri- or tetradentate ligand,13 if it
indeed chelates at all. If P,N-chelation is important, then it
seems likely that either or both of the truncated triazole
monophosphites 11 and 12 would give results comparable
to those obtained with CL8ib. Neither does. Two ligand to
metal ratios were examined for 11 and 12 in the hydrogena-
tion of 9. 11 affords a poor catalyst at either a 1:1 or 2:1
ratio. 12 exhibits poor reactivity at the 2:1 12/Rh(I) ratio.
The reactivity is improved at the 1:1 ratio, suggesting that
P,N-ligation may be relevant for 12, although it is not clear
how its structure can accommodate P,N-chelation within the
(9) Dolhem, F.; Johansson, M. J.; Antonsson, T.; Kann, N. J. Comb.
Chem. 2007, 9, 477-486.
(10) (a) Hua, Z.; Vassar, V. C.; Ojima, I. Org. Lett. 2003, 5, 3831-
3834. (b) Rubio, M.; Suarez, A.; Alvarez, E.; Pizzano, A. Chem. Commun.
2005, 628-630. (c) Rubio, M.; Vargas, S.; Suarez, A.; Alvarez, E.; Pizzano,
A. Chem. Eur. J. 2007, 13, 1821-1833.
(11) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer,
M. AdV. Synth. Catal. 2003, 345, 103-151.
(12) For recent examples of the use of diphosphites in rhodium-catalyzed
asymmetric hydrogenation, see: (a) Reetz, M. T.; Mehler, G.; Bondarev,
O. Chem. Commun. 2006, 2292-2294. (b) Junge, K.; Hagemann, B.;
Enthaler, S.; Erre, G.; Beller, M. ARKIVOC 2007, 50-66. (c) Axet, M. R.;
Benet-Buchholz, J.; Claver, C.; Castillon, S. AdV. Synth. Catal. 2007, 349,
1983-1998. (d) Marson, A.; Freixa, Z.; Kamer, P. C. J.; van Leeuwen, P.
W. N. M. Eur. J. Inorg. Chem. 2007, 4587-4591.
546
Org. Lett., Vol. 10, No. 4, 2008