10.1002/cctc.201700043
ChemCatChem
COMMUNICATION
K) δ=0.90(d, J=6.0 Hz, 3 H), 1.61-1.73 (m, 4 H), 2.39 (dd, J=9.3, 12.8 Hz
1 H), 2.46-2.70 (m, 5 H), 2.99 (dd, J=3.8, 12.8 Hz, 7.01-7.38 (m, 5 H);
13C{1H} NMR (62.5 MHz, [D8]THF, 294 K) δ=16.4, 23.6, 41.1, 50.1, 59.6,
125.1, 127.4, 128.8, 139.9; HRMS (ESI): m/z: calcd for C13H20N
(190.1590): [M+H]+; found 190.1596. These data are in agreement with
previously published data.[18]
Evans, P. S. Anderson, M. E. Christy, C. D. Colton, D. C. Remy, K. E.
Rittle, E. L. Engelhardt, J. Org. Chem. 1979, 44, 3127; m) H. Lehmkuhl,
D. Reinehr, J. Organomet. Chem. 1973, 55, 215; n) T. Narita, T.
Yamaguchi, T. Tsuruta, Bull. Chem. Soc. Jpn. 1973, 46, 3825; o) R. J.
Schlott, J. C. Falk, K. W. Narducy, J. Org. Chem. 1972, 37, 4243; p) T.
Asahara, M. Seno, S. Tanaka, N. Den, Bull. Chem. Soc. Jpn. 1969, 42
,
1996; q) R. Stroh, J. Ebersberger, H. Haberland, W. Hahn, Angew.
Chem. 1957, 69, 124; r) R. D. Closson, J. P. Napolitano, G. G. Ecke, A.
J Kolka, J. Org.Chem. 1957, 22, 646; s) B. W. Howk, E. L.; Little, S. L.
Scott, G. M. Whitman, J. Am. Chem. Soc. 1954, 76, 1899; t) R. Wegler,
G. Pieper, Chem. Ber. 1950, 83, 1.
Acknowledgements
The authors are thankful to MENSR, CNRS and the Groupe de
Recherche International (GDRI) “Homogeneous Catalysis for
Sustainable Development” for their support to this work.
[7]
[8]
For an excellent review on base-catalysed hydroamination of
unactivated olefins including the early developments of the field: J.
Seayad, A. Tillack, C. G. Hartung, M. Beller, Adv. Synth. Catal. 2002,
344, 795.
For efficient strategies to control the regioselectivity: a) Y. Xi, T. W.
Butcher, J. Zhang, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55, 776;
b) reference 3a; c) Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald,
Keywords: Intermolecular hydroamination • Lithium • Anti-
Markovnikov addition • Secondary amines • Vinylarenes
Science 2015, 349, 62; d) S. Zhu, S. L. Buchwald, J. Am. Chem. Soc.
2014, 136, 15913.
[1]
a) L. Huang, M. Arndt, K. Gooßen, H. Heydt, L.J. Gooßen, Chem. Rev.
2015, 115, 2596; b) E. Bernoud, C. Lepori, M. Mellah, E. Schulz, J.
[9]
a) J. Deschamp, C. Olier, E. Schulz, R. Guillot, J. Hannedouche, J.
Collin, Adv. Synth. Catal. 2010, 352, 2171; b) J. Deschamp, J. Collin, J.
Hannedouche, E. Schulz, Eur. J. Org. Chem. 2011, 18, 3329.
Hannedouche, Catal. Sci. Technol. 2015, 5, 2017; c) V. Rodriguez-Ruiz,
R. Carlino, S. Bezzenine-Lafollée, R. Gil, D. Prim, E. Schulz, J.
Hannedouche, Dalton Trans. 2015, 44, 12029; d) J. Hannedouche, E.
Schulz, Chem. Eur. J. 2013, 19, 4972; e) K. D. Hesp M. Stradiotto,
[10] For seminal works on asymmetric intramolecular hydroamination
promoted by chiral-lithium-based systems see: a) P. H. Martinez, K. C.
Hultzsch, F. Hampel, Chem. Commun. 2006, 2221; b) T. Ogata, A.
Ujhara, S. Tsuchida, Shimizu, T. A. Kaneshige, K. Tomioka,
Tetrahedron Lett. 2007, 48, 6648, 247.
ChemCatChem 2010, 2, 1192; f) T. E. Müller, K. C. Hultzsch, M. Yus, F.
Foubelo M. Tada, Chem. Rev. 2008, 108, 3795.
[2]
[3]
a) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135, 9588;
b) T. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew. Chem., Int. Ed.
2014, 53, 6198.
[11] For
a selection of base-catalysed racemic cyclohydroamination of
alkenes: a) H.; Fujita, M. Tokuda, M. Nitta, H. Suginome, Tetrahedron
Lett. 1992, 33, 6359; b) A. Ates, C. Quinet, J. Org. Chem. 2003, 1623;
c) C. Quinet, P. Jourdain, C. Hermans, A. Ates, I. Lucas, I. E. Markó,
a) S. C. Ensign, E. P. Vanable, G. D. Kortman, L. J. Weir, K. L. Hull, J.
Am.Chem. Soc. 2015, 137, 13748; b) C. Munro-Leighton, S. A. Delp, N.
M. Alsop, E. D. Blue, T. B. Gunnoe, Chem. Commun. 2008, 111; c) M.
Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2004, 126, 2702; d) M.
Utsunomiya, R. Kuwano, M. Kawatsura, J. F. Hartwig, J. Am.
Chem.Soc. 2003, 125, 5608.
Tetrahedron 2008, 64, 1077; d) C. Quinet, L. Sampoux, I. E. Mark
J. Org. Chem. 2009, 1806.
ό, Eur.
[12] a) S. J. Zuend, A. Ramirez, E. Lobkovsky, D. B. Collum, J. Am. Chem.
Soc. 2006, 128, 5939.; b) R. E. Mulvey, S. D. Robertson, Angew. Chem.
Int. Ed. 2013, 52, 11470; c) H. J. Reich, Chem. Rev. 2013, 113, 7130.
[13] Use of primary amines in these conditions led to a significantly lower
reactivity than observed with secondary amines. Indeed, benzylamine
and cyclopentylamine allowed the formation of anti-Markovnikov
products in only 25 and 32 % yield respectively, after 5 h reaction, but
with a perfect selectivity in monohydroamination products. Prolongated
reaction time (144h) for benzylamine led to 85% NMR yield of anti-
Markovnikov product from monohydroamination.
[4]
[5]
a) S. Germain, E. Schulz, J. Hannedouche, Chem.Cat.Chem. 2014,
2065; b) D. V. Gribkov, K. C. Hultzsch, F. Hampel J. Am. Chem. Soc.
2006, 128, 3748; c) J.-S. Ryu, G. Y. Li, T. J. Marks, J. Am. Chem. Soc.
2003, 125, 12584.
a) C. Brinkmann, A. G. M. Barrett, M. S. Hill, P. A. Procopiou, J. Am.
Chem. Soc. 2012, 134, 2193; b) B. Liu, T. Roisnel, J.-F. Carpentier, Y.
Sarazin, Angew. Chem. Int. Ed. 2012, 51, 4943; c) A. G. M. Barrett, C.
Brinkmann, M. R. Crimmin, M. S. Hill, P. Hunt, P. A. Procopiou, J. Am.
Chem. Soc. 2009, 131, 12906; d) X. Zhang, T. J. Emge, K. C. Hultzsch,
Angew. Chem. Int. Ed. 2012, 51, 394.
[14] To our knowledge, the highest ee value reported to date for the
enantioselective anti-Markovnikov addition of amines and styrene
derivatives promoted by chiral lithium-based catalyst is 14%, see
reference 6a, as unique report.
[6]
a) P. Horrillo-Martínez, K. C. Hultzsch, A. Gil, V. Branchadell, Eur. J.
Org. Chem. 2007, 3311; b) V. Khedkar, A. Tillack, C. Benisch, J.-P.
Melder, M. Beller, J. Mol. Catal. A 2005, 241, 175; c) K. Kumar, D.
Michalik, I. G. Castro, A. Tillack, A. Zapf, M. Arlt, T. Heinrich, H.
Böttcher, M. Beller, Chem. Eur. J. 2004, 10, 746; d) C. G. Hartung, C.
Breindl, A. Tillack, M. Beller, Tetrahedron 2000, 56, 5157; e) M. Beller,
C. Breindl, T. H. Riermeier, A. Tillack, J. Org. Chem. 2001, 66, 1403; f)
D. Tzalis, C. Koradin, P. Knochel, Tetrahedron Lett. 1999, 40, 6193; g)
M. Beller, C. Breindl, T. H. Riermeier, M. Eichberger, H. Trauthwein,
Angew. Chem. Int. Ed. 1998, 37, 3389; h) M.; Beller, C. Breindl,
Tetrahedron 1998, 54, 6359; i) H. Hamana, F. Iwasaki, H. Nagashima,
K. Hattori, T. Hagiwara, T. Marita, Bull. Chem. Soc. Jpn. 1992, 65,1109;
j) D. Steinborn, B. Thies, I. Wagner, R. Taube, Z. Chem. 1989, 29, 333;
k) G. P. Pez, J. E. Galle, Pure Appl. Chem. 1985, 57, 1917; l) B. E.
[15] a) I. Aillaud, K. Wright, J. Collin, E. Schulz, J.-P. Mazaleyrat,
Tetrahedron Asymmetry, 2008, 19, 82; b) I. Aillaud, J. Collin, C.
Duhayon, R. Guillot, D. Lyubov, E. Schulz, A. Trifonov, Chem. Eur. J.
2008, 14, 2189; c) J. Collin, J.-C. Daran, O. Jacquet, E. Schulz, A.
Trifonov, Chem. Eur. J. 2005, 11, 3455.
[16] A. R. Katritzky, K. Yannakopoulou, P. Lue, D. Rasala, L. J. Urogdi,
Chem. Soc., Perkin Trans. 1 1989, 225.
[17] A. R. Katritzky, S. Strah, S. A. Belyakov, Tetrahedron 1998, 54, 7167.
[18] A. Tillack, D. Hollmann, K. Mevius, D. Michalik, S. Baehn, M. Beller,
Eur. J. Org. Chem. 2008, 4745.
This article is protected by copyright. All rights reserved.