Diverse Migrating Groups in Allenyl Systems
A R T I C L E S
Scheme 1. General Cu-Catalyzed Cycloisomerization of Alkynyl
Ketones and Imines toward Furans and Pyrroles
As an alternative, focus has shifted lately to catalytic approaches
toward furans7 and pyrroles8 from acyclic substrates, which often
employ milder conditions and provide easy access to multisub-
stituted heterocyclic cores. Atom-economical cycloisomerization
methods are particularly attractive. Among them, transition
metal-catalyzed cycloisomerizations of allenyl ketones 1 intro-
(6) For recent examples, see: (a) Galliford, C. V.; Scheidt, K. A. J. Org. Chem.
2007, 72, 1811. (b) St. Cyr, D. J.; Martin, N.; Arndtsen, B. A. Org. Lett.
2007, 9, 449. (c) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006,
45, 6704. (d) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc.
2005, 127, 9260. (e) Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem.
2005, 70, 7679. (f) Larionov, O. V.; de Meijere, A. Angew. Chem., Int.
Ed. 2005, 44, 5664. (g) Duan, X.-h.; Liu, X.-y.; Guo, L.-n.; Liao, M.-c.;
Liu, W.-M.; Liang, Y.-m. J. Org. Chem. 2005, 70, 6980. (h) Lee, K. Y.;
Lee, M. J.; Kim, J. N. Tetrahedron 2005, 61, 8705. (i) Jung, C.-K.; Wang,
J.-C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118. (j) Dhawan, R.;
Arndtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468. (k) Nishibayashi, Y.;
Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.; Uemura, S. Angew.
Chem., Int. Ed. 2003, 42, 2681. (l) Braun, R. U.; Zeitler, K.; Mu¨ller, T. J.
J. Org. Lett. 2001, 3, 3297. (m) Brown, C. D.; Chong, J. M.; Shen, L.
Tetrahedron 1999, 55, 14233. (n) Shiraishi, H.; Nishitani, T.; Sakaguchi,
S.; Ishii, Y. J. Org. Chem. 1998, 63, 6234. (o) Shindo, M.; Yoshimura, Y.;
Hayashi, M.; Soejima, H.; Yoshikawa, T.; Matsumoto, K.; Shishido, K.
Org. Lett. 2007, 9, 1963. (p) Tejedor, D.; Gonzalez-Cruz, D.; Garcia-
Tellado, F.; Marrero-Tellado, J. J.; Rodriguez, M. L. J. Am. Chem. Soc.
2004, 126, 8390.
(7) For catalytic approaches toward furans, see: (a) Davies, H. M. L.; Romines,
K. R. Tetrahedron, 1988, 44, 3343. (b) Heilbron, I. M.; Jones, E. R. H.;
Smith, P.; Weedon, B. C. L. J. Chem. Soc. 1946, 54. (c) Marshall, J. A.;
DuBay, W. J. J. Org. Chem. 1993, 58, 3435. (d) Marshall, J. A.; Bennett,
C. E. J. Org. Chem. 1994, 59, 6110. (e) Seiller, B.; Bruneau, C.; Dixneuf,
P. H. Tetrahedron 1995, 51, 13089. (f) Gabriele, B.; Salerno, G.; dePascali,
F.; Tomasi, Sciano, G.; Costa, M.; Chiusoli, G. P. Tetrahedron Lett. 1997,
38, 6877. (g) Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64,
7687. (h) Gabriele, B.; Salerno, G.; dePascali, F.; Costa, M.; Chiusoli, G.
P. J. Org. Chem. 1999, 64, 7693. (i) Hashmi, A. S. K.; Schwarz, L.; Choi,
J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285. (j) McDonald,
F. E.; Shultz, C. C. J. Am. Chem. Soc. 1994, 116, 9363. (k) Lo, C.-Y.;
Guo, H.; Lian, J.-J.; Shen, F.-W.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930.
(l) Hashmi, A. S. K., Sinha P. AdV. Synth. Catal. 2004, 346, 432. (m)
Marshall, J. A.; DuBay, W. J. J. Am. Chem. Soc. 1992, 114, 1450. (n)
Marshall, J. A.; Robinson, E. D. J. Org. Chem. 1990, 55, 3450. (o) Marshall,
J. A.; Wang, X. J. Org. Chem. 1991, 56, 960. (p) Marshall, J. A.; Wang,
X. J. Org. Chem. 1992, 57, 3387. (q) Marshall, J. A.; Bartley, G. S. J.
Org. Chem. 1994, 59, 7169. (r) Hashmi, A. S. K.; Schwarz, L. Chem. Ber./
Recueil 1997, 130, 1449. (s) Hashmi, A. S. K.; Rupert, T. L.; Knofel, T.;
Bats, J. W. J. Org. Chem. 1997, 62, 7295. (t) Ma, S.; Zhang, J. Chem.
Commun. 2000, 117. (u) Ma, S.; Li, L. Org. Lett. 2000, 2, 941. (v) Ma, S.;
Gu, Z.; Yu, Z. J. Org. Chem. 2005, 70, 6291. (w) Sheng, H.; Lin, S.; Huang,
Y. Tetrahedron Lett. 1986, 27, 4893. (x) Sheng, H.; Lin, S.; Huang, Y.
Synthesis, 1987, 1022. (y) Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki,
H. J. Org. Chem. 1991, 56, 5816. (z) Wakabayashi, Y.; Fukuda, Y.;
Shiragami, H.; Utimoto, K.; Nozaki, H. Tetrahedron 1985, 41, 3655. (aa)
Ma, S.; Zhang, J. J. Am. Chem. Soc. 2003, 125, 12386. (ab) Ma, S.; Zhang,
J. Angew. Chem., Int. Ed. 2003, 42, 183. (ac) Suhre, M. H.; Reif, M.; Kirsch,
S. F. Org. Lett. 2005, 7, 3925. (ad) Yao, T.; Zhang, X.; Larock, R. C. J.
Am. Chem. Soc. 2004, 126, 11164. (ae) Patil, N. T.; Wu, H.; Yamamoto,
Y. J. Org. Chem. 2005, 70, 4531. (af) Aurrecoechea, J. M.; Pe´rez, E.
Tetrahedron 2004, 60, 4139. (ag) Aurrecoechea, J. M.; Pe´rez, E. Tetra-
hedron Lett. 2003, 44, 3263. (ah) Aurrecoechea, J. M.; Pe´rez, E.
Tetrahedron Lett. 2001, 42, 3839. (ai) Aurrecoechea, J. M.; Pe´rez, E. Solay,
M. J. Org. Chem. 2001, 66, 564. (aj) Sniady, A.; Durham, A.; Morreale,
M. S.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2007, 9, 1175. (ak) Diaz-
AÄ lvarez, A. E.; Crochet, P.; Zablocka, M.; Duhayon, C.; Cadierno, V.;
Gimeno, J.; Majoral, J. P. AdV. Synth. Catal. 2006, 348, 1671. (al) Zhou,
C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325. (am) Kawai,
H.; Oi, S.; Inoue, Y. Heterocycles 2006, 67, 101. (an) Peng, L.; Zhang,
X.; Ma, M.; Wang, J. Angew. Chem., Int. Ed. 2007, 46, 1905.
duced by Marshall7m-q (Cat ) Ag) and then elaborated by
Hashmi7i (Cat ) Au) have become one of the most powerful
methods for assembly of furan ring 2. Along this line, we have
recently developed a mild and efficient Cu-catalyzed cycloi-
somerization of alkynyl imines9 and ketones 310 into the
respective heterocycles 2 (Scheme 1). The reaction conditions,
which were developed, are compatible with both acid- and base-
sensitive substrates.9,10 Moreover, this method proved to be
especially efficient for the synthesis of C-2 unsubstituted
pyrroles 2, which are not readily available through traditional
condensation methods (Scheme 1).5 Mechanistic investigations
revealed that the reaction proceeds through an allenylimine or
-ketone intermediate 1, and that the propargylic protons
ultimately reside at the C-3 and C-4 positions of the ring
(Scheme 1).9,11
Despite a number of advantages of these protocols, their scope
is limited to the preparation of C-3 and C-4 unsubstituted
heterocycles only. We reasoned that this problem could be
alleviated if one of the hydrogens at C-4 in 4 is replaced with
a suitable migrating group Y. Thus, aiming at expanding the
scope of the migrating group, we have recently developed a set
of cascade methods for the synthesis of C-3 substituted pyrroles
and furans 7 proceeding via 1,2-shift of thio-,12 halogen-,13 and
aryl/alkyl-14 groups in allene 5 (Scheme 2).
Herein, we describe a more detailed study of these transfor-
mations, the synthesis of seleno-heterocycles including unprec-
edented 1,2-selenium migration, as well as a more thorough
mechanistic investigation of these unique cascade cycloisomer-
izations.
Results and Discussion
1,2-Sulfur Migration in the Synthesis of Heterocycles. 1,2-
Migration of chalcogenides15 is an important chemical trans-
formation, which is extensively used in carbohydrate chemistry
for substitution at the anomeric center,16,17 as well as in the
synthesis of stereodefined, nonaromatic heterocycles18,19 and
allylsulfides.18 Furthermore, 1,2-thio-shift is known to occur in
(9) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001,
123, 2074.
(10) Kel’in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
(11) See Supporting Information for details.
(8) For catalytic approaches toward pyrroles, see: (a) Yu, M.; Pagenkopf, B.
Org. Lett. 2003, 5, 5099. (b) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1997,
62, 4568. (c) Tseng, H.-R.; Lee, C.-F.; Yang, L.-M.; Luh, T.-Y. J. Org.
Chem. 1999, 64, 8582. (d) Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng,
A.-S.; Tseng, J.-C.; Luh, T.-Y. J. Am. Chem. Soc. 2000, 122, 4992. (e)
Schulte, K. E.; Reisch, J.; Walker, H. Chem. Ber. 1965, 98, 98-103. (f)
Chalk, A. J. Tetrahedron Lett. 1972, 13, 3487. (g) Chalk, A. J. Tetrahedron
1974, 30, 1387. (h) Ramathan, B.; Keith, A. J.; Armstrong, D.; Odom, A.
L. Org. Lett. 2004, 6, 2957. (i) Utimoto, K.; Miura, H.; Nozaki, H.
Tetrahedron Lett. 1981, 22, 4277. (j) Dieter, R. K.; Yu, H. Org. Lett. 2001,
3, 3855. (k) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 11260. (l) Gabriele, B.; Salerno, G.; Fazio, A.; Bossio, M. R.
Tetrahedron Lett. 2001, 42, 1339. (m) Gabriele, B.; Salerno, G.; Fazio, A.
J. Org. Chem. 2003, 68, 7853. (n) Nedolya, N. A.; Brandsma, L.; Tarasova,
O. A.; Verkruijsse, H. D.; Trofimov, B. A. Tetrahedron Lett. 1998, 39,
2409. (o) Tarasova, O. A.; Nedolya, N. A.; Vvedensky, V. Yu.; Brandsma,
L.; Trofimov, B. A.; Tetrahedron Lett. 1997, 38, 7241. (p) Dahwan, R.;
Arndsten, B. A. J. Am. Chem. Soc. 2004, 126, 468. (q) Smith, C. R.;
Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (r)
Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (s) Istrate, F. M.;
Gagosz, F. Org. Lett. 2007, 9, 3181.
(12) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42,
98.
(13) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127,
10500.
(14) Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195.
(15) (a) For, recent review on 1,2-sulfur migrations, see: Sromek, A. W.;
Gevorgyan, V. Topics Curr. Chem. 2007, 274, 77. (b) For, 1,2-sulfur
migration in the synthesis of pyrroles, see: Peng, L.; Zhang, X.; Ma, J.;
Zhong, Z.; Wang, J. Org. Lett. 2007, 9, 1445. (c) For a formal 1,4-sulfur
migration in the synthesis of furans, see ref 7an.
(16) For most recent work, see: (a) Fox, D. J.; House, D.; Warren, S. Angew.
Chem., Int. Ed. 2002, 41, 2462. (b) Baldwin, I. C.; Briner, P.; Eastgate, M.
D.; Fox, D. G.; Warren, S. Org. Lett. 2002, 4, 4381. (c) Caggiano, L.;
Davies, J.; Fox, D. J.; Moody, D. C.; Warren, S. Chem. Commun. 2003,
1648. (d) Caggiano, L.; Fox, D. J.; Warren, S. Chem. Commun. 2002, 2528.
(e) Caggiano, L.; Davies, J.; Fox, D. J.; Moody, D. C.; Warren, S. Chem.
Commun. 2003, 1650. (f) Fox, D. J.; Morley, T. J.; Taylor, S.; Warren, S.
Org. Biomol. Chem. 2005, 3, 1369. (g) House, D.; Kerr, F.; Warren, S. J.
Chem. Soc. Perkin Trans. 1 2002, 2652. (h) Carlisle, J.; Fox, D. J.; Warren,
S. Chem. Commun. 2003, 269. (i) Eastgate, M. D.; Fox, D. J.; Morley, T.
J. Warren, S. Synthesis 2002, 2124.
9
J. AM. CHEM. SOC. VOL. 130, NO. 4, 2008 1441