Aza-Analogues of Acyclovir
63
REFERENCES
1. De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115–133.
2. Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues and nucleobases in cancer
treatment. Lancet Oncol. 2002, 3, 415–424.
3. De Clercq, E.; Field, H.J. Antiviral prodrugs–The development of successful prodrug strategies for
antiviral chemotherapy. Br. J. Pharmacol. 2006, 147, 1–11.
4. Selected papers published during last five years: (a) Gao, H.; Mitra, A.K. Regioselective synthesis
of various prodrugs of ganciclovir. Tetrahedron Lett. 2000, 41, 1131–1136; (b) Beadle, J.R.; Kini, G.D.;
Aldern, K.A.; Gardner, M.F.; Wright, K.N.; Rybak, R.J.; Kern, E.R.; Hostetler, K.Y. Synthesis and antivi-
ral evaluation of 1-O-hexadecylpropanediol-3-P-acyclovir: Efficacy against HSV-1 infection in mice.
Nucleosides, Nucleotides Nucleic Acids 2000, 19, 471–479; (c) McGuigan, C.; Slater, M.J.; Parry, N.R.;
Perry, A.; Harris, S. Synthesis and antiviral activity of acyclovir-5ꢁ-(phenylmethoxyalaninyl)phosphate
as a possible membrane-soluble nucleotide prodrug. Bioorg. Med. Chem. Lett. 2000, 10, 645–647; (d)
Balzarini, J.; Haller-Meier, F., De Clercq, E.; Meier C. Antiviral activity of cyclosaligenyl prodrugs
of acyclovir, carbovir and abacavir. Antiviral Chem. Chemother., 2001, 12, 301–306; (e) Tak, R.V.; Pal,
D.; Gao, H.; Dey, S.; Mitra, A.K. Transport of acyclovir ester prodrugs through rabbit cornea and
SIRC-rabbit corneal epithelial cell line. J. Pharm. Sci. 2001, 90, 1505–1515; (f) Gao, H.; Mitra, A.K.
Regioselective synthesis of acyclovir and its various prodrugs. Synth. Commun. 2001, 31, 1399–1420;
(g) Yang, C.; Gao, H.; Mitra, A.K. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino
acid ester prodrugs of acyclovir. J. Pharm. Sci. 2001, 90, 617–624; (h) Dias, C.S.; Anand, B.S.; Mitra,
A.K. Effect of mono- and di-acylation on the ocular disposition of ganciclovir: Physicochemical
properties, ocular bioreversion, and antiviral activity of short chain ester prodrugs. J. Pharm. Sci.
2002, 91, 660–668; (i) Nashed, Y.E.; Mitra, A.K. Synthesis and characterization of novel dipeptide
ester prodrugs of acyclovir. Spectrochim. Acta A 2003, 59, 2033–2039; (j) Salamonczyk, G.M. Acyclovir
terminated thiophosphate dendrimers. Tetrahedron Lett. 2003, 44, 7449–7453.
5. El Ashry, E.S.H.; El Kilany, Y. Acyclonucleosides: Part 1. Seco–Nucleosides. Adv. Heterocycl. Chem.
1997, 67, 391–438, Acyclonucleosides: Part 2. diseco–Nucleosides. Adv. Heterocycl. Chem. 1997, 68,
1–88; Acyclonucleosides: Part 3. tri–, tetra–, and pentaseco–Nucleosides. Adv. Heterocycl. Chem. 1998,
69, 129–215; (b) Simons, C. Nucleoside Mimetics: Their Chemistry and Biological Aspects. Gorgon and
Breach Science Publishers: Amsterdam, 2001; pp. 161–172; (c) Vorbru¨ggen, H.; Ruh-Pohlenz, C.
Handbook of Nucleoside Synthesis. John Wiley: New York, 2001; Tables I-XI; pp. 110–589; (d) Ichikawa,
E.; Kato. K. Sugar-modified nucleosides in past 10 years, A review. Curr. Med. Chem. 2001, 8, 385–423;
(c) Jeong, L.S.; Lee, J.A. Recent advances in the synthesis of the carbocyclic nucleosides as potential
antiviral agents. Antivir. Chem. Chemother. 2004, 15, 235–250; (e) Kumar, R. 5-(1-Substituted) alkyl
pyrimidine nucleosides as antiviral (herpes) agents. Curr. Med. Chem. 2004, 11, 2749–2766.
6. Montgomery, J.A.; Temple, C. Synthesis of potential anticancer agents. XXVI. The alkylation of
6-chloropurine. J. Am. Chem. Soc. 1961, 83, 630–635; (b) Nishitani, T.; Horikawa, H.; Iwasaki,
T.; Matsumoto, K.; Inoue, I.; Miyoshi, M. Synthetic electroorganic chemistry. 14. Synthesis
of 5-fluorouracil derivatives having N-acylazacycloalkanes and lactams. J. Org. Chem. 1982, 47,
1706–1712; (c) Sergeev, V.N.; Shapovalenko, E.P.; Baukov, Yu.I. Silyl method for the synthesis of
N-(organosulfonamidomethyl)lactams and imides. Russ. J. Gen. Chem. (Engl. Transl.) 1987, 57,
1177–1182 [Zh. Obshch. Khim., 1987, 57, 1315–1321]; (d) Nishitani, T.; Iwasaki, T.; Mushika, Y.;
Inoue, I.; Miyoshi, M. Synthesis of 3-amino-3-(5-fluorouracil-1-yl)propionic acid and 4-amino-4-
(5-fluorouracil-1-yl)butyric acid derivatives. Chem. Pharm. Bull. 1980, 28, 1137–1141; (e) Inoue,
K.; Iwasaki, T.; Nishitani, T.; Kondou, K.; Arai, Y. 5-Fluorouracil derivative and its preparation.
JP58216169, 1983 (Chem. Abstr. 1984, 100, 174851b); (f) Miyoshi, S; Inoue, K.; Mushishika, Y.; Iwasaki
T.; Nishitani, T.; Arai, Y. 5-Fluorouracil derivative and preparation thereof. JP58213762, 1983 (Chem.
Abstr. 1984, 100, 174852c); (g) Kingsbury, W.D.; Boehm, J.C.; Mehta, R.J.; Grappel, S.F.; Gilvarg,
C. A novel peptide delivery system involving peptidase activated prodrugs as antimicrobial agents.
Synthesis and biological activity of peptidyl derivatives of 5-fluorouracil. J. Med. Chem. 1984, 27,
1447–1451; (h) Nichifor, M.; Schacht, E.H. Synthesis of peptide derivatives of 5-fluorouracil. Tetrahe-
dron 1994, 50, 3747–3760; (i) Khutova, B.M.; Klyuchko, S.V.; Prikazchikova, L.P. Amidoalkylation
of pyrimidine bases of nucleic acids. Chem. Heterocycl. Compd. (Engl. Transl.) 1991, 27, 407–409
[Khim. Geterotsikl. Soedin. 1991, 512–515]; (j) Besova, E.A.; Goloshchapov, N.M.; Goloshchapova,
E.N.; Michurina, A. E.; Shipov, A. G.; Baukov, Yu. I. Reaction of Substituted 5-oxazolidinones with