Page 5 of 7
ACS Medicinal Chemistry Letters
Cinnamic Derivatives in Tuberculosis, Understanding Tuberculosis -
New Approaches to Fighting Against Drug Resistance; Cardona, P.ꢀJ.,
Ed.; InTech, 2012.
mycobacterial activity. These findings suggest that the deꢀ
1
2
3
4
5
6
signed compounds highlighted the benefit of incorporating a
hydrazine linkage to combine styryl portion of DZG and thiaꢀ
zole core, thus providing a good starting point for further lead
optimization. The possible enhancement in the antiꢀ
mycobacterial activity can be further accomplished by slender
variation in the ring substituents and/or extensive additional
functionalization warrants further investigations.
(11) Bairwa, R.; Kakwani, M.; Tawari, N. R.; Lalchandani, J.; Ray, M. K.;
Rajan, M. G. R.; Degani, M. S. Novel Molecular Hybrids of
Cinnamic Acids and Guanylhydrazones as Potential Antitubercular
Agents. Bioorg. Med. Chem. Lett. 2010, 20 (5), 1623–1625.
(12) Joshi, D. G.; Oza, H. B.; Parekh, Η. H. Synthesis of Some Novel
1,3,4ꢀOxadlazoles and 5ꢀOxoꢀImidazolines as Potent Biologically
Active Agents. Heterocycl. Commun. 1997, 3 (2).
7
8
9
(13) Bakkestuen, A. K.; Gundersen, L.ꢀL.; Langli, G.; Liu, F.; Nolsøe, J.
M. 9ꢀBenzylpurines with Inhibitory Activity against Mycobacterium
Tuberculosis. Bioorg. Med. Chem. Lett. 2000, 10 (11), 1207–1210.
(14) Carvalho, S. A.; da Silva, E. F.; de Souza, M. V. N.; Lourenço, M. C.
S.; Vicente, F. R. Synthesis and Antimycobacterial Evaluation of
New TransꢀCinnamic Acid Hydrazide Derivatives. Bioorg. Med.
Chem. Lett. 2008, 18 (2), 538–541.
(15) De, P.; Koumba Yoya, G.; Constant, P.; BedosꢀBelval, F.; Duran, H.;
Saffon, N.; Daffé, M.; Baltas, M. Design, Synthesis, and Biological
Evaluation of New Cinnamic Derivatives as Antituberculosis Agents.
J. Med. Chem. 2011, 54 (5), 1449–1461.
(16) Rastogi, N.; Goh, K. S.; Horgen, L.; Barrow, W. W. Synergistic
Activities of Antituberculous Drugs with Cerulenin and Trans ꢀ
Cinnamic Acid against Mycobacterium Tuberculosis. FEMS
Immunol. Med. Microbiol. 1998, 21 (2), 149–157.
(17) Shingalapur, R. V; Hosamani, K. M.; Keri, R. S. Synthesis and
Evaluation of in vitro AntiꢀMicrobial and AntiꢀTubercular Activity of
2ꢀStyryl Benzimidazoles. Eur. J. Med. Chem. 2009, 44 (10), 4244–
4248.
(18) Babu, R. R.; Naresh, K.; Ravi, A.; Madhava Reddy, B.; Harinadha
Babu, V. Synthesis of Novel Isoniazid Incorporated Styryl
Quinazolinones as AntiꢀTubercular Agents against INH Sensitive and
MDR M. Tuberculosis Strains. Med. Chem. Res. 2014, 23 (10), 4414–
4419.
(19) Hampannavar, G. A.; Karpoormath, R.; Palkar, M. B.; Shaikh, M. S.
An Appraisal on Recent Medicinal Perspective of Curcumin
Degradant: Dehydrozingerone (DZG). Bioorg. Med. Chem. 2016, 24
(4), 501–520.
ASSOCIATED CONTENT
Supporting Information
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The Supporting Information is available free of charge on the
ACS Publications website. Synthetic procedures, spectral data and
protocols of bioassay (PDF)
AUTHOR INFORMATION
Corresponding Author
* Phone: +27 31 260 7179; Fax: +27 (0) 31 260 7792. Eꢀmail:
Author Contributions
The manuscript was written through contributions of all authors.
Funding Sources
This work was supported by funds from the University of KwaZuꢀ
luꢀNatal (UKZN), Westville Campus, Durban, South Africa.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Authors sincerely thank National Institutes of Health and the Naꢀ
tional Institute of Allergy and Infectious Diseases (NIAID; Conꢀ
tract No.: HHSN272201100009I / HHSN27200002 A14), Bethesꢀ
da, MD, (USA), for in vitro antiꢀmycobacterial activity characterꢀ
ization. Authors are also grateful to Mr. Dilip Jagjivan and Dr.
Caryl Janse Van Rensburg (UKZN, South Africa) for their assisꢀ
tance in the NMR and HRMS experiments.
(20) Luger, P.; Daneck, K.; Engel, W.; Trummlitz, G.; Wagner, K.
Structure and Physicochemical Properties of Meloxicam, a New
NSAID. Eur. J. Pharm. Sci. 1996, 4, 175–187.
(21) Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R. V.;
Shen, Z.; Cook, L. S.; Doweyko, A. M.; Pitt, S.; Pang, S.; Shen, D.
R.; Fang, Q.; De Fex, H. F.; McIntyre, K. W.; Shuster, D. J.; Gillooly,
K. M.; Behnia, K.; Schieven, G. L.; Wityak, J.; Barrish, J. C. 2ꢀ
Aminothiazole as a Novel Kinase Inhibitor Template. Structureꢀ
Activity Relationship Studies toward the Discovery of Nꢀ(2ꢀChloroꢀ6ꢀ
Methylphenyl)ꢀ2ꢀ[[6ꢀ [4ꢀ(2ꢀHydroxyethyl)ꢀ1ꢀPiperazinyl]ꢀ2ꢀMethylꢀ
4ꢀPyrimidinyl]amino]ꢀ1, 3ꢀThiazoleꢀ5ꢀCarboxamide (Dasatinib,
BMSꢀ354825) as a Potent panꢀSrc Kinase Inhibitor. J. Med. Chem.
2006, 49 (23), 6819–6832.
REFERENCES
(1) Herzog, H. History of Tuberculosis. Respiration 1998, 65 (1), 5–15.
(2) Collins, F. M. Mycobacterial Pathogenesis: A Historical Perspective.
Front. Biosci. a J. virtual Libr. 1998, 3, e123–e132.
(3) World Health Organization. Global Tuberculosis Report 2014
(WHO/HTM/TB/2014.08); 2014.
(4) Bloom, B. R. Tuberculosis: Pathogenesis, Protection, and Control;
Bloom, B. R., Ed.; ASM Press, 1994, 1994.
(5) Chung, H. S.; Shin, J. C. Characterization of Antioxidant Alkaloids
and Phenolic Acids from AnthocyaninꢀPigmented Rice (Oryza Sativa
Cv. Heugjinjubyeo). Food Chem. 2007, 104 (4), 1670–1677.
(6) Guzman, J. Natural Cinnamic Acids, Synthetic Derivatives and
Hybrids with Antimicrobial Activity. Molecules 2014, 19 (12),
19292–19349.
(7) Bezerra, D. P.; Castro, F. O.; Alves, a. P. N. N.; Pessoa, C.; Moraes,
M. O.; Silveira, E. R.; Lima, M. a S.; Elmiro, F. J. M.; CostaꢀLotufo,
L. V. In vivo GrowthꢀInhibition of Sarcoma 180 by Piplartine and
Piperine, Two Alkaloid Amides from Piper. Brazilian J. Med. Biol.
Res. 2006, 39 (6), 801–807.
(8) Rastogi, N.; Goh, K. S.; Wright, E. L.; Barrow, W. W. Potential Drug
Targets for Mycobacterium Avium Defined by Radiometric Drugꢀ
Inhibitor Combination Techniques. Antimicrob. Agents Chemother.
1994, 38 (10), 2287–2295.
(9) Reddy, V. M.; Nadadhur, G.; Daneluzzi, D.; Dimova, V.;
Gangadharam, P. R. Antimycobacterial Activity of a New Rifamycin
Derivative, 3ꢀ(4ꢀCinnamylpiperazinyl Iminomethyl) Rifamycin SV
(T9). Antimicrob. Agents Chemother. 1995, 39 (10), 2320–2324.
(10) Prithwiraj De, Damien Veau, Florence BedosꢀBelval, S. C. and M. B.
(22) Meissner, A.; Boshoff, H. I.; Vasan, M.; Duckworth, B. P.; Barry, C.
E.; Aldrich, C. C. StructureꢀActivity Relationships of 2ꢀ
Aminothiazoles Effective against Mycobacterium Tuberculosis.
Bioorganic Med. Chem. 2013, 21 (21), 6385–6397.
(23) Carradori, S.; Secci, D.; D’Ascenzio, M.; Chimenti, P.; Bolasco, A.
Microwave
and
UltrasoundꢀAssisted
Synthesis
of
Thiosemicarbazones and Their Corresponding (4,5ꢀSubstitutedꢀ
Thiazolꢀ2ꢀYl)hydrazines. J. Heterocycl. Chem. 2014, 51 (6), 1856–
1861.
(24) Shaikh, M. S.; Palkar, M. B.; Patel, H. M.; Rane, R. A.; Alwan, W.
S.; Shaikh, M. M.; Shaikh, I. M.; Hampannavar, G. A.; Karpoormath,
R. Design and Synthesis of Novel Carbazolo–thiazoles as Potential
AntiꢀMycobacterial Agents Using
a Molecular Hybridization
Approach. RSC Adv. 2014, 4 (107), 62308–62320.
(25) Villemagne, B.; Flipo, M.; Blondiaux, N.; Crauste, C.; Malaquin, S.;
Leroux, F.; Piveteau, C.; Villeret, V.; Brodin, P.; Villoutreix, B. O.;
Sperandio, O.; Soror, S. H.; Wohlkönig, A.; Wintjens, R.; Deprez, B.;
Baulard, A. R.; Willand, N. Ligand Efficiency Driven Design of New
Inhibitors of Mycobacterium Tuberculosis Transcriptional Repressor
EthR Using Fragment Growing, Merging, and Linking Approaches. J.
Med. Chem. 2014, 57 (11), 4876–4888.
(26) Mata, R.; Morales, I.; Pérez, O.; RiveroꢀCruz, I.; Acevedo, L.;
EnriquezꢀMendoza, I.; Bye, R.; Franzblau, S.; Timmermann, B.
Antimycobacterial Compounds from Piper S Anctum. J. Nat. Prod.
ACS Paragon Plus Environment