220 Organometallics, Vol. 27, No. 2, 2008
Das et al.
Table 2. Selected Bond Lengths (Å) and Bond Angles (deg) of 1
and 2
Treatment of L with standard metal complex precursors yields
the three complexes (L)PtCl2 (1), (L)PdCl2 (2), and
(L)Re(CO)3Cl (3); the results of their crystal structure deter-
mination are summarized and illustrated in Tables 2 and 3 and
Figures 1-3.
M ) Pt (1)
M ) Pd (2)
Bond Lengths
2.363(2)
2.361(2)
2.219(2)
2.219(2)
1.807(9)
1.893(8)
1.799(8)
1.862(7)
1.835(9)
1.831(8)
M-Cl(1)
2.3654(8)
2.3639(8)
2.2316(8)
2.2321(8)
1.807(3)
1.868(3)
1.809(3)
1.871(3)
1.824(3)
1.827(3)
The structures show the expected2 formation of five-
membered chelate rings involving two ortho-positioned dialkyl-
phosphino groups (R configuration) and the four-coordinate d8
(1, 2) or six-coordinate d6 configured metal centers (3). The
five-membered rings are approximately planar, adopting only
a slightly twisted conformation. No intra- or intermolecular
metal/quinoxaline interaction was detected. According to the
straightforward NMR spectra this arrangement is maintained
also in solution; splitting of P-methyl and P-tert-butyl 1H NMR
signals for 3 reflect the different chemical environments above
and below the π plane as a consequence of the fac-Re(CO)3Cl
configuration (Figure 3).
M-Cl(2)
M-P(2)
M-P(1)
P(1)-C(14)
P(1)-C(15)
P(2)-C(9)
P(2)-C(10)
P(1)-C(1)
P(2)-C(8)
Bond Angles
91.20(8)
171.11(7)
171.66(7)
91.01(7)
88.57(8)
90.50(7)
108.9(4)
108.6(4)
P(1)-M-Cl(1)
P(1)-M-Cl(2)
P(2)-M-Cl(1)
P(2)-M-Cl(2)
P(2)-M-P(1)
Cl(1)-M-Cl(1)
C(9)-P(2)-C(10)
C(15)-P(1)-C(14)
90.56(3)
169.99(3)
169.65(3)
90.07(3)
87.48(3)
93.53(3)
The complexes show one-electron electrochemical reduction,
facilitated in comparison to that of the free ligand (Table 4).
The second reduction could not be observed in CH2Cl2 or
CH3CN, suggesting a large comproportionation constant for the
intermediate, as would be expected for 1,4-diazine redox
systems.5b Electron addition proved to be irreversible (ECir
process) even at 243 K for the dichloropalladium complex 2;
addition of excess (0.1 M) Bu4NCl enhanced the reversibility
and allowed us to determine a potential of -1.45 V (∆E ) 110
mV) at a 200 mV/s scan rate. The much more pronounced
lability of 4d transition-metal-halide bonds on reduction relative
to 5d element analogues is well-known;11 it can be desirable
for some kinds of catalytic activation.12 The rhenium(I)
compound 3 exhibits a partially reversible oxidation (Figure 4)
at a potential higher than that for the (irreversible) oxidation of
L. This result reflects the involvement of phosphine lone pairs
in metal binding and suggests a metal-based oxidation to labile
rhenium(II);13 unfortunately, the spectroelectrochemical mea-
109.01(16)
109.01(16)
Table 3. Selected Bond Lengths (Å) and Bond Angles (deg) of 3
Bond Lengths
Re-Cl
2.503(2)
2.483(2)
1.939(7)
1.937(5)
1.968(4)
2.462(2)
1.843(9)
1.864(8)
1.820(8)
1.870(7)
1.848(2)
1.847(1)
Re-P(1)
Re-C(19)
Re-C(20)
Re-C(21)
Re-P(2)
P(1)-C(14)
P(1)-C(15)
P(2)-C(9)
P(2)-C(10)
P(1)-C(1)
P(2)-C(8)
Bond Angles
P(1)-Re-Cl
87.71(7)
P(1)-Re-C(20)
P(1)-Re-C(21)
P(1)-Re-C(19)
P(2)-Re-Cl
171.90(9)
97.48(1)
89.31(5)
83.30(7)
82.50(6)
89.99(1)
170.41(5)
97.78(7)
176.68(6)
94.43(7)
87.11(5)
176.42(2)
174.01(4)
178.37(2)
103.93(8)
103.33(1)
(9) (a) Kaim, W.; Bock, H. J. Am. Chem. Soc. 1978, 100, 6504. (b)
Kaim, W.; Bock, H. Chem. Ber. 1981, 114, 1576. (c) Gross-Lannert, R.;
Kaim, W.; Lechner, U.; Roth, E.; Vogler, C. Z. Anorg. Allg. Chem. 1989,
579, 47. (d) Giordan, J. C.; Moore, J. H.; Tossell, J. A.; Kaim, W. J. Am.
Chem. Soc. 1985, 107, 5600.
P(2)-Re-P(1)
P(2)-Re-C(20)
P(2)-Re-C(21)
P(2)-Re-C(19)
C(19)-Re-Cl
C(20)-Re-Cl
C(21)-Re-Cl
Re-C(21)-O(21)
Re-C(20)-O(20)
Re-C(19)-O(19)
C(9)-P(2)-C(10)
C(14)-P(1)-C(15)
(10) (a) Fenske, D. Chem. Ber. 1979, 112, 363. (b) Becher, H. J.; Fenske,
D.; Heymann, M. Z. Anorg. Allg. Chem. 1981, 475, 27. (c) Fenske, D.;
Becher, H. J. Chem. Ber. 1974, 107, 117; 1975, 108, 2115. (d) Becher,
H. J.; Bensmann, W.; Fenske, D. Chem. Ber. 1977, 110, 315. (e) Fenske,
D. Angew. Chem. 1976, 88, 415; Angew. Chem., Int. Ed. Engl. 1976, 15,
381. (f) Bensmann, W.; Fenske, D. Angew. Chem. 1979, 91, 754; Angew.
Chem., Int. Ed. Engl. 1979, 18, 677. (g) Fenske, D.; Christidis, A. Angew.
Chem. 1981, 93, 113; Angew. Chem., Int. Ed. Engl. 1981, 20, 129. (h)
Fenske, D.; Christidis, A. Z. Naturforsch., B 1981, 36, 518. (i) Fenske, D.;
Brandt, K.; Stock, P. Z. Naturforsch., B 1981, 36, 768. (j) Fenske, D.; Stock,
P. Angew. Chem. 1982, 94, 393; Angew. Chem., Int. Ed. Engl. 1982, 21,
356; Angew. Chem. Suppl. 1982, 862. (k) Fenske, D.; Bensmann, W. Z.
Naturforsch., B 1984, 39, 1819. (l) Fenske, D.; Bensmann, W. Z.
Naturforsch., B 1985, 40, 1093. (m) Duffy, N. W.; Nelson, R. R.; Richmond,
M. G.; Rieger, A. L.; Rieger, P. H.; Robinson, B. H.; Tyler, D. R.; Wang,
J. C.; Yang, K. Inorg. Chem. 1998, 37, 4849. (n) Braden, D. A.; Tyler,
D. R. Organometallics 2000, 19, 3762.
Tables 2 and 3. Further details are provided in the Supporting
Information.
Results and Discussion
(11) Frantz, S.; Reinhardt, R.; Greulich, S.; Wanner, M.; Fiedler, J.;
Duboc-Toia, C.; Kaim, W. Dalton Trans. 2003, 3370.
The free ligand R,R-2,3-bis(tert-butylmethylphosphino)qui-
noxaline undergoes an electrochemically reversible one-electron
reduction at -2.05 V vs ferrocenium/ferrocene (Table 4); the
quinoxaline parent has E1/2 ) -2.18 V. The radical anion
produced, L•-, shows an only partially resolved EPR signal at
giso ) 2.0030 with a total spectral width of about 4 mT. Due to
the insufficient resolution, the complex spectrum could not yet
be analyzed. Nevertheless, this result confirms the π-electron
deficiency of quinoxaline,4 enhanced further by the established
electron-withdrawing effect of dialkylphosphino substituents.9,10
(12) (a) Kölle, U.; Grätzel, M. Angew. Chem. 1987, 99, 572; Angew.
Chem., Int. Ed. Engl. 1987, 26, 568. (b) Kölle, U.; Kang, B.-S.; Infelta, P.;
Compte, P.; Grätzel, M. Chem. Ber. 1989, 122, 1869. (c) Chardon-Noblat,
S.; Cosnier, S.; Deronzier, A.; Vlachopoulos, N. J. Electroanal. Chem. 1993,
352, 213. (d) Westerhausen, D.; Herrmann, S.; Hummel, W.; Steckhan, E.
Angew. Chem. 1992, 104, 1496; Angew. Chem., Int. Ed. Engl. 1992, 321,
1529. (e) Kaim, W.; Reinhardt, R.; Sieger, M. Inorg. Chem. 1994, 33, 4453.
(13) (a) Klein, A.; Vogler, C.; Kaim, W. Organometallics 1996, 15,
236. (b) Hartmann, H.; Scheiring, T.; Fiedler, J.; Kaim, W. J. Organomet.
Chem. 2000, 604, 267. (c) Frantz, S.; Fiedler, J.; Hartenbach, I.; Schleid,
Th.; Kaim, W. J. Organomet. Chem. 2004, 689, 3031. (d) Knödler, A.;
Wanner, M.; Fiedler, J.; Kaim, W. Dalton Trans. 2002, 3079.