10.1002/chem.201904801
Chemistry - A European Journal
COMMUNICATION
[2] For application of C-S cross coupling in Pharmaceuticals, See: a) D. A.
Boyd, Angew. Chem., Int. Ed. Engl. 2016, 55, 15486; b) M. Feng,
B.Tang, S. Liang, X. Jiang, Curr. Top. Med. Chem. 2016, 6, 1200; c) E.
A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832; d)
B. L. Grand, C. Pignier, R. Letienne, F. Cuisiat, F. Rolland, A. Mas, B.
Vacher, J. Med. Chem. 2008, 51, 3856; e) G. A. Patani, E. J. LaVoie,
Chem. Rev. 1996, 96, 3147.
The catalyst is recyclable without loss of activity and HRMS–ESI
experiment reveals that there is no leaching of catalyst during
reaction (see supp. Info).
In conclusion, Cu(II) catalyst is less efficient at room
temperature for C-S cross-coupling. we disclosed here a new
bimetallic CuMoO4 nano-catalyst developed first time for C-S
cross coupling of haloarenes with alky and aryl thiols at room
temperature. The idea and concept of doping of molybdenum
metals with copper was found to be more efficient and makes a
remarkable difference in catalytic activity. The catalyst is highly
efficient and recyclable. CuMoO4-DMSO-Cs2CO3 combination is
found to be best one to afford C-S cross-coupling product in high
yields under mild condition. The recyclable and inexpensive
copper (II) catalyst considerably at room temperature has not
been reported still in bimetallic form. The catalyst is effective for
a wide range of thiols and haloarenes. The other applications
along with mechanistic study are underway in the laboratory and
will be reported in due course.
[3] a)For Limitation of Metal-Sulfur bond, See: a) T. Kondo, T. Mitsudo, Chem.
Rev. 2000, 100, 3205; b) J. F. Hartwig, Acc. Chem. Res. 2008, 41,
1534; c) E. Alvaro, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 7858;
d) I. P. Beletskaya, V. P.; Ananikov, Chem. Rev. 2011, 111, 1596.
[4] a)T. Migita, T. Shimizu, Y. Asami, J. Shiobara, Y. Kato, M. Kosugi, Bull.
Chem. Soc. Jpn. 1980, 53, 1385; b) M. Kosugi, T. Ogata, M. Terada, H.
Sano, T. Migita, Bull. Chem. Soc. Jpn. 1985, 58, 3657.
[5]
a) S. V. Ley, A. W. Thomas, Angew. Chem., Int. Ed. Eng. 2003, 42,
5400; b) H.J. Cristau, B. Chabaud, A. Chene, H. Christol, Synthesis
1981,11 892.
[6] a) A. Van. Bierbeek, M. Gingras, Tetrahedron Lett. 1998, 39, 6283; b) J.
N. Gardner, S. Kaiser, A. Krubiner, H. Lucas, Can. J. Chem. 1973, 51,
1419; c) J. Lindley, Tetrahedron 1984, 40, 1433; d) T. Yamamoto, Y.
Sekine, Can. J. Chem. 1984, 62, 1544.
[7]
For Palladium catalyzed C-S Cross coupling Reactions, See: a) A. J.
Rojas, B. L. Pentelute, S. L. Buchwald, Org. Lett. 2017, 19, 4263. b)
M.
A.
Fernandez-Rodriguez,
J.
F. Hartwig,
Chem.
Eur.
Experimental Section
J. 2010, 16, 2355; c) M.A. Fernandez-Rodríguez, J. F. Hartwig, J.
Org. Chem. 2009, 74, 1663; d) M. A. Fernandez-Rodríguez, Q. Shen,
J. F. Hartwig, Chem. Eur. J. 2006, 12, 7782; e) M.A. Fernandez-
Rodríguez, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 2180; f) G. Y.
Li, Angew. Chem., Int. Ed. Eng. 2001, 40, 1513; g) G. Mann, D.
Baranano, J. F. Hartwig, A. L. Rheingold, I. A. Guzei, J. Am. Chem.
Soc. 1998, 120, 9205; h) M. Murata, S. L. Buchwald, Tetrahedron 2004,
60, 7397; i) J. Xu, R. Y. Liu, C. S. Yeung, S. L. Buchwald, ACS Catal.
2019, 9, 6461, j) T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587
Diphenylsulfane (3a): An oven dried 10 mL of 3-necked round bottom
flask was charged with a stir bar, flame dried under vacuum and back
filled with nitrogen three times. The flask was then charged sequentially
with CuMoO4 2.6 mol% (6 mg), 1 ml of DMSO, Thiophenol (110 mg, 1.0
mmol), iodobenzene (223 mg, 1.1 mmol), Cs2CO3 (389 mg, 1.2 equiv).
(The adding sequence should be followed strongly). The reaction mixture
was evacuated and purged with inert gas (N2) three times. The reaction
mixture was then stirred at 30oC. After the reaction is over after 12 h. It
was worked up with ethyl acetate and of water (25 x 10ml). The layers
are separated. Organic layer is collected and concentrated. The crude
product was subjected to flash chromatography (1:40 EtOAc:hexanes)
and isolated as colorless oil (167 mg, 90%). Physical State: liquid; 1H
NMR (400 MHz, CDCl3) δ 7.28-7.25(m, 4H), 7.24-7.20 (m, 4H) 7.18-
7.14 (m, 2H), 13C NMR (100 MHz, CDCl3) δ 135.3, 131.0, 129.2, 127.0.
[8]
For Copper catalyzed C-S Cross coupling Reactions, See: (a) C. Uyeda,
Y. Tan, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2013, 135, 9548;
b), P.-F. Larsson, A. Correa, M. Carril, P. O. Norrby, C. Bolm, Angew.
Chem., Int. Ed. Eng. 2009, 48, 5691; c) C. G. Bates, R. K. Gujadhur,
D. Venkataraman, Org. Lett. 2002, 4, 2803; d) F. Y. Kwong, S. L.
Buchwald, Org. Lett. 2002, 4, 3517; e) Y.-J. Wu, H. He, Synlett 2003,
12, 1789; f) C. G. Bates,
P. Saejueng, M. Q. Doherty, D.
Venkataraman, Org. Lett. 2004, 6, 5005; g) W. Deng, Y. Zou, Y.-F.
Wang, L. Liu, Q.-X. Guo, Synlett 2004, 7, 1254; h) C. Palomo, M.
Oiarbide, R. Lopez, E. Gomez-Bengoa, Tetrahedron Lett. 2000, 41,
1283; i) C. Savarin, J. Srogl, L. S. Liebeskind, Org. Lett. 2002, 4,
4309; j) P. S. Herradura, K. A. Pendola, R. K. Guy, Org. Lett. 2000, 2,
2019; k) D. Zhu, L. Xu, F. Wu, B. Wan, Tetrahedron Lett. 2006, 47,
578; l) E. Sperotto, G. P. M. vanKlink, J. G. de Vries, G. van Koten, J.
Org. Chem. 2008, 73, 5625; m) L. Rout, T. K. Sen, T. Punniyamurthy,
Angew. Chem., Int. Ed. Eng. 2007, 46, 5583; n) L. Rout, P. Saha, S.
Jammi, T. Punniyamurthy, Eur. J. Org. Chem. 2008, 4, 640.
Acknowledgements
Prof. L. Rout is grateful to PG Department of Chemistry,
Berhampur University, Odisha, India. SERB/EMR/2016/ 006898,
DST, India; S & T department Govt. of Odisha/27562800512107
/20/1919. Planning and Convergence Department, Govt. of
Odisha, (no. L.N. /716/P/2016), University Grants Commission
(UGC) start-up grant [F-4-5(58)/2014 (BSR/FRP)] for financial
support. Dr. Rout is grateful to Prof. Akhila. K. Sahoo of UOH,
Prof. T. Punniyamurthy IIT Guwahati, Prof. S. Peruncheralathan,
Prof. H. S. Biswal, NISER Bhubaneswar and Prof. H. K. Sahoo,
NIT Rourkela for discussion.
[9]
For Nickel catalyzed C-S Cross coupling Reactions, See: a) M. Jouffroy,
C. B. Kelly, G. A. Molander, Org. Lett. 2016, 18, 876; b) L. Rout, P.
Saha, S. Jammi, T. Punniyamurthy, Eur. J. Org. Chem. 2008, 4, 640;
c) M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila, J. W. J. Am.
Chem. Soc. 2016, 13, 1760; d) N. Taniguchi, J. Org. Chem. 2004, 69,
6904; e) Y. Zhang, Y. K. C. Ngeow, J. Y. Ying, Org. Lett. 2007, 9,
3495; f) R. Sikari, S. Sinha, S. Das, S. Saha, G. Chakraborty, R.
Mondal, N. D. Paul, J. Org. Chem. 2019, 847, 4072; g) K. D. Jones, D.
J. Power, D. Bierer, K. M. Gericke, S. G. Stewart, Org. Lett. 2018, 20,
208; h) A. S. Kashin, E. S. Degtyareva, D. B. Eremin, V. P. Ananikov,
Nature Communications, 2018, 9, 2936
Keywords: CuMoO4 • thiol • haloarene • C-S cross-coupling •
room temperature
[1] a) M. Feng, B. Tang, S. H. Liang, X. Jiang, Curr. Top. Med. Chem, 2016,
16, 1200; b) X. Yan, Z. Wang, A. Sudom, M. Cardozo, M.
DeGraffenreid, Y. Di, P. Fan, X. He, J. C. Jaen, M. Labelle, J. Liu, J.
Ma, D. McMinn, S. Miao, D. Sun, L. Tang, H. Tu, S. Ursu, N. Walker,
Q. Ye, J. P. Powers, Bioorg. Med. Chem. Lett. 2010, 20, 7071.
[10] Y.-C. Wong, T. T. Jayanth, C.-H. Cheng, Org. Lett. 2006, 8, 5613.
[11] A. Correa, M. Carril, C. Bolm, Angew. Chem. Int. Ed. Eng. 2008, 47,
2880.
This article is protected by copyright. All rights reserved.