Communication
ChemComm
A. Varela, C. Citti, P. Songara, D. Leonori and V. K. Aggarwal, Angew.
Chem., Int. Ed., 2017, 56, 10835; (d) M. Odachowshi, A. Bonet, S. Essafi,
P. Conti-Ramsden, J. N. Harvey, D. Leonori and V. K. Aggarwal, J. Am.
Chem. Soc., 2016, 138, 9521.
7 (a) L. Zhang, D. Peng, X. Leng and Z. Huang, Angew. Chem., Int. Ed.,
2013, 52, 3676; (b) L. Zhang, Z. Zuo, X. Wan and Z. Huang, J. Am.
Chem. Soc., 2014, 136, 15501; (c) J. Chen, T. Xi and Z. Lu, Org. Lett.,
2014, 16, 6452; (d) Z. Wang, X. He, R. Zhang, G. Zhang, G. Xu,
Q. Zhang, T. Xiong and Q. Zhang, Org. Lett., 2017, 19, 3067;
(e) J. Chen, T. Xi, X. Ren, B. Cheng, J. Guo and Z. Lu, Org. Chem.
Front., 2014, 1, 1306.
8 (a) M. Srebnik, T. E. Cole, P. V. Ramachandran and H. C. Brown,
J. Org. Chem., 1989, 54, 6085; (b) B. A. Ondrusek, J. K. Park and
D. T. McQuade, Synlett, 2014, 239; (c) I.-H. Chen, L. Yin, W. Itano,
M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2009, 131, 116645;
(d) X. Feng and J. Yun, Chem. – Eur. J., 2010, 16, 13609; (e) J. M.
O’Brien, K.-S. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2010,
132, 10630.
In summary, herein we report a convenient methodology to
difunctionalize ketone compounds through gem-bis(boronates),
which introduces two significant transformable functional groups
simultaneously. This method exhibits a wide substrate scope and
high functional group tolerance. The synthetic utility of this
method was further demonstrated through producing the inter-
mediate substrate in the synthesis of (Æ)-acorone and isoacorone.
Mechanistic investigations suggest that the tertiary a-boron
aldehyde intermediate and C/O isomerization were involved
in the process.
The authors acknowledge Dr Gerald Bauer for polishing
the manuscript and helpful discussion. We acknowledge the
‘‘Thousand Talents Plan’’ Youth Program (No. 13802350017)
and Tongji University for the financial support.
9 (a) L. Wang, T. Zhang, W. Sun, Z. He, C. Xia, Y. Lan and C. Liu, J. Am.
Chem. Soc., 2017, 139, 5257; (b) H. Li, X. Shangguan, Z. Zhang,
S. Huang, Y. Zhang and J. Wang, Org. Lett., 2014, 16, 448.
10 (a) K. Endo, T. Ohkubo, M. Hirokami and T. Shibata, J. Am. Chem.
Soc., 2010, 132, 11033; (b) Z.-Q. Zhang, C.-T. Yang, L.-J. Liang,
B. Xiao, X. Lu, J.-H. Liu, Y.-Y. Sun, T. B. Marder and Y. Fu, Org.
Lett., 2014, 16, 6342; (c) C. Sun, B. Potter and J. P. Morken, J. Am.
Chem. Soc., 2014, 136, 6534; (d) B. Potter, A. A. Szymaniak, E. K.
Edelstein and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 17918;
(e) J. Kim, S. Park, J. Park and S. H. Cho, Angew. Chem., Int. Ed., 2016,
55, 1498; ( f ) Z.-Q. Zhang, B. Zhang, X. Lu, J.-H. Liu, X.-Y. Lu, B. Xiao
and Y. Fu, Org. Lett., 2016, 18, 952.
11 K. Hong, X. Liu and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 10581.
12 (a) Z. He and A. K. Yudin, J. Am. Chem. Soc., 2011, 133, 13770; (b) J. Bai,
L. D. Burke and K. J. Shea, J. Am. Chem. Soc., 2007, 129, 4981;
(c) D. Chen, X. Zhang, W.-Y. Qi, B. Xu and M.-H. Xu, J. Am. Chem.
Soc., 2015, 137, 5268; (d) Q.-Q. Cheng, S.-F. Zhu, Y.-Z. Zhang, X.-L. Xie
and Q.-L. Zhou, J. Am. Chem. Soc., 2013, 135, 14094; (e) Z. He, A. Zajdlik
and A. K. Yudin, Acc. Chem. Res., 2014, 47, 1029.
13 (a) D. S. Matteson and R. J. Moody, Organometallics, 1982, 1, 20;
(b) D. S. Matteson and D. Majumdar, Organometallics, 1983, 2, 230;
(c) S. Condon, C. Zou and J.-Y. Nedelec, J. Organomet. Chem., 2006,
3245; (d) N. J. Bell, A. J. Cox, N. R. Cameron, J. S. O. Evans, T. B.
Marder, M. A. Duin, C. J. Elsevier, X. Baucherel, A. A. D. Tulloch and
R. P. Tooze, Chem. Commun., 2004, 1854.
14 C. E. Iacono, T. C. Stephens, T. S. Rajan and G. Pattison, J. Am.
Chem. Soc., 2018, 140, 2036.
15 W. Sun, L. Wang, C. Xia and C. Liu, Angew. Chem., Int. Ed., 2018,
57, 5501.
16 (a) D. S. Matteson, R. J. Moody and P. K. Jesthi, J. Am. Chem. Soc.,
1975, 97, 5608; (b) D. S. Matteson and R. J. Moody, J. Org. Chem.,
1980, 45, 1091; (c) K. Endo, M. Hirokami and T. Shibata, J. Org.
Chem., 2010, 75, 3469; (d) J. R. Coombs, L. Zhang and J. P. Morken,
Org. Lett., 2015, 17, 1708; (e) T. C. Stephens and G. Pattison, Org.
Lett., 2017, 19, 3498.
17 (a) W. Huang, X. Wan and Q. Shen, Angew. Chem., Int. Ed., 2017,
56, 11986; (b) Y. Kobayashi and R. Mizojiri, Tetrahedron Lett., 1996,
37, 8531; (c) Y. Kobayashi, Y. Nakayama and R. Mizojiri, Tetrahedron,
1998, 54, 1053.
18 Compared with the tertiary centre construction without any metal
catalyst in ref. 15, it needs palladium catalyst here to suppress the
steric hindrance possibly.
19 Due to their direct commercial availability or easy preparation from
commercially available reagents, some substrates with Br as the
leaving group were utilized.
Conflicts of interest
The authors declare no competing financial interest.
Notes and references
1 (a) A. Y. Hong and B. M. Stoltz, Eur. J. Org. Chem., 2013, 2745;
(b) C. Hawner and A. Alexakis, Chem. Commun., 2010, 46, 7295; (c) A. C. B.
Burtoloso, Synlett, 2009, 320; (d) P. G. Cozzi, R. Hilgraf and
N. Zimmermann, Eur. J. Org. Chem., 2007, 5969; (e) J. Christoffers
and A. Baro, Adv. Synth. Catal., 2005, 347, 1473.
2 A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6722.
3 (a) S. L. Zultanski and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 624;
(b) Q. Zhou, K. M. Cobb, T. Tan and M. P. Watson, J. Am. Chem. Soc.,
2016, 138, 12057; (c) Z. T. Ariki, Y. Maekawa, M. Nambo and C. M.
Crudden, J. Am. Chem. Soc., 2018, 140, 78; (d) K. Yotsuji, N. Hoshiya,
T. Kobayashi, H. Fukuda, H. Abe, M. Arisaw and S. Shuto, Adv. Synth.
Catal., 2015, 357, 1022; (e) K. Nakamura, R. Hara, Y. Sunada and
T. Nishikata, ACS Catal., 2018, 8, 6791.
4 For some selected examples of decarboxylative cross-coupling, see:
(a) J. Wang, T. Qin, T.-G. Chen, L. Wimmer, J. T. Edwards, J. Cornella,
B. Vokits, S. A. Shaw and P. S. Baran, Angew. Chem., Int. Ed., 2016,
55, 9676; (b) F. Sandfort, M. J. O’Neill, J. Cornella, L. Wimmer and
P. S. Baran, Angew. Chem., Int. Ed., 2017, 56, 3319for some selected
examples of Suzuki coupling, see: (c) P. Ren, L.-A. Stern and X. Hu,
Angew. Chem., Int. Ed., 2012, 51, 9110; (d) A. Joshi-Pangu, C.-Y. Wang
and M. R. Biscoe, J. Am. Chem. Soc., 2011, 133, 8478; (e) T. Iwasaki,
H. Takagawa, S. P. Singh, H. Kuniyasu and N. Kambe, J. Am. Chem. Soc.,
2013, 135, 9604; ( f ) H. Ohmiya, T. Tsuji, H. Yorimitsu and K. Oshima,
Chem. – Eur. J., 2004, 10, 5640; (g) H. Someya, H. Ohmiya, H. Yorimitsu
and K. Oshima, Org. Lett., 2008, 10, 969; (h) T. Tsuji, H. Yorimitsu and
K. Oshima, Angew. Chem., Int. Ed., 2002, 41, 4137 for some selected
reductive reactions, see: (i) X. Wang, S. Wang, W. Xue and H. Gong,
J. Am. Chem. Soc., 2015, 137, 11562; ( j) H. Chen, X. Jia, Y. Yu, Q. Qian
and H. Gong, Angew. Chem., Int. Ed., 2017, 56, 13103 for an example
with palladium and boron as catalysts, see: (k) T. Fujita, T. Yamamoto,
Y. Morita, H. Chen, Y. Shimizu and M. Kanai, J. Am. Chem. Soc., 2018,
140, 5899.
5 (a) B. Potter, E. K. Edelstein and J. P. Morken, Org. Lett., 2016,
18, 3286; (b) C. Garcia-Ruiz, J. L.-Y. Chen, C. Sandford, K. Feeney,
P. Lorenzo, G. Berionni, H. Mayr and V. K. Aggarwal, J. Am. Chem. Soc.,
2017, 139, 15324; (c) K. M. Cobb, J. M. Rabb-Lynch, M. E. Hoerrner,
A. Manders, Q. Zhou and M. P. Watson, Org. Lett., 2017, 19, 4355; 20 (a) D. A. McCrae and L. Dolby, J. Org. Chem., 1977, 42, 1607; (b) S. F.
(d) K. Hojoh, Y. Shido, H. Ohmiya and M. Sawamura, Angew. Chem.,
Int. Ed., 2014, 53, 4954; (e) M. A. Kacprzynski and A. H. Hoveyda,
J. Am. Chem. Soc., 2004, 126, 10676.
6 (a) J. L. Stymiest, V. Bagutski, R. M. French and V. K. Aggarwal, Nature,
2008, 456, 778; (b) B. S. L. Collins, C. M. Wilson, E. L. Myers and
Martin and T.-S. Chou, J. Org. Chem., 1978, 43, 1027; (c) C.-C. Liao and
J.-L. Zhu, J. Org. Chem., 2009, 74, 7837.
21 Another peak at 34.1 ppm was also detected that possibly corresponded
to the isomer a-BPin aldehyde. The chemical shift was too close to that
reported for BuBPin (37 ppm), which made it unascertainable.
V. K. Aggarwal, Angew. Chem., Int. Ed., 2017, 56, 11700; (c) A. P. Pulis, 22 E. W. H. Ng, K.-H. Low and P. Chiu, J. Am. Chem. Soc., 2018, 140, 3537.
13378 | Chem. Commun., 2018, 54, 13375--13378
This journal is ©The Royal Society of Chemistry 2018