CATALYTIC ACTIVITY OF IN SITU SYNTHESIZED MoWNi SULFIDES
211
%
100
80
60
40
20
0
1
2
3
4
5
6
7
8
9
10
τ, h
α, % → MoxNiW–C18–PMA
Sdec, %
S, %
α, % → Mo1.7NiW–MVE–PMA
Fig. 8. Hydrogenation of naphthalene in the presence of the Mo WNi–C –PMA and Mo WNi–MVE–PMA catalysts; reac-
1.7
18
1.7
tion conditions: 1% H O, 2.5% S, 380°C, 5 MPa H .
2
2
9. E. A. Karakhanov, A. L. Maksimov, A. V. Zolotukhina,
and Yu. S. Kardasheva, Russ. Chem. Bull. 62, 1456
(2016).
nated faster than its unsubstituted analog [40, 41]. Also
note that adsorption is more strongly hindered by the
methyl groups lying in the vicinal position (as in 2,3-
dimethylnaphthalene) or near the main carbon atoms
(as in 1-methylnaphthalene).
Thus, MoWNi–sulfide catalysts were synthesized
by thermal decomposition of metal–polymer precur-
sors in a sulfur-containing hydrocarbon raw material.
The thus obtained catalysts showed high activity in
hydrogenation of bicyclic aromatic hydrocarbons. The
optimum ratio of metals in the precursor was found at
which the maximum conversion of naphthalene and
decalin selectivity can be reached.
10. S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva,
Pet. Chem. 54, 323 (2014).
11. R. R. Chianelli, G. Berhault, and B. Torres, Catal.
Today 147, 27 (2009).
12. R. Prins, Adv. Catal. 46, 399 (2002).
13. Y. Peng, Z. Meng, C. Zhong, et al., J. Solid State
Chem. 159, 170 (2001).
14. O. A. Knyazheva, O. N. Baklanova, O. D. Lavrenov,
E. A. Buluchevskii, V. A. Drozdov, M. V. Trenikhin,
N. N. Leont’eva, A. V. Vasilevich, and V. A. Likholo-
bov, Kinet. Catal. 55, 121 (2014).
15. S. Eijsbouts, S. W. Mayo, and K. Fujita, Appl. Catal. A:
Gen. 322, 58 (2007).
ACKNOWLEDGMENTS
16. H. Nava, F. Pedraza, and G. Alonso, Catal. Lett. 99, 65
This study was financially supported by the Russian
Scientific Foundation (agreement no. 15-13-00123).
(2005).
17. R. R. Chianelli, G. Berhault, and B. Torres, Catal.
Today 147, 275 (2009).
18. L. Medici and R. Prins, J. Catal. 163, 38 (1996).
REFERENCES
1. D. C. Lee and L. W. J. Jang, Appl. Polym. Sci. 61, 1117
19. S. Kavlak, A. O. Kodolbas, H. K. Can, et al., Adv.
Polym. Tech. 23, 222 (2004).
(1996).
20. C. M. Xiao, J. Tan, and G. N. Xue, Express Polym.
2. A. D. Pomogailo, Catalysis by Polymer–Immobilized
Metal Complexes (CRC, Boca Raton, FL, 1999).
3. J. M. Klostranec and W. C. W. Chan, Adv. Mater. 18,
Lett. 4 (1), 9 (2010).
21. R. D. Corato, A. Quarta, P. Piacenza, et al., J. Mater.
Chem. 18, 1991 (2008).
1953 (2006).
22. J. Hein, PhD Thesis (Tech. Univ. München,
4. A. A. Khan and L. Paquiza, J. Appl. Polym. Sci. 127,
München, 2015).
3737 (2013).
23. P. A. Nikul’shin, Doctoral (Chem.) Dissertation
(N. D. Zelinsky Inst. Org. Chem. RAS, Moscow,
2015).
24. Spectroscopic Methods in Complex Compound Chemistry,
Ed. by V. M. Vdovenko (Khimiya, Moscow, 1964) [in
Russian].
25. A. D. Pomogailo, A. S. Rozenberg, and I. E. Uflyand,
Metal Nanoparticles in Polymers (Khimiya, Moscow,
2000) [in Russian].
5. Ch. E. Carraher, Jr., Polymer Chemistry, 9th ed. (CRC,
Boca Raton, FL, 2013).
6. B. L. Rivas, J. Sanchez, and B. F. Urbano, Polym. Int.
65, 255 (2016).
7. A. A. Ostroushko, Doctoral (Chem.) Dissertation
(Moscow, 1996).
8. M. P. Boronoev, E. S. Subbotina, A. A. Kurmaeva,
Yu. S. Kardasheva, A. L. Maksimov, and E. A. Kara-
khanov, Pet. Chem. 56, 109 (2016).
26. A. Keefer, J. Am. Chem. Soc. 70, 3261 (1948).
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 91 No. 2 2017