820
R. Erez et al. / Bioorg. Med. Chem. Lett. 18 (2008) 816–820
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Dharap, S. S.; Wang, Y.; Chandna, P.; Khandare, J. J.;
Qiu, B.; Gunaseelan, S.; Sinko, P. J.; Stein, S.; Farmanf-
armaian, A.; Minko, T. Proc. Natl. Acad. Sci. 2005, 102,
12962.
2. Fujita, F.; Koike, M.; Fujita, M.; Sakamoto, Y.; Okuno,
S.; Kawaguchi, T.; Yano, S.; Yano, T.; Kiuchi, S.;
Fujiwara, T.; Kudoh, S.; Kakushima, M. Clin. Cancer
Res. 2005, 11, 1650.
3. Gopin, A.; Pessah, N.; Shamis, M.; Rader, C.; Shabat, D.
Angew. Chem. Int. Ed. Engl. 2003, 42, 327.
4. Gopin, A.; Rader, C.; Shabat, D. Bioorg. Med. Chem.
2004, 12, 1853.
5. Heymann, D.; Ory, B.; Gouin, F.; Green, J. R.; Redini, F.
Trends Mol. Med. 2004, 10, 337.
6. Rogers, M. J. Curr. Pharm. Des. 2003, 9, 2643.
7. Sundaramoorthi, R.; Shakespeare, W. C.; Keenan, T. P.;
Metcalf, C. A., 3rd; Wang, Y.; Mani, U.; Taylor, M.; Liu,
S.; Bohacek, R. S.; Narula, S. S.; Dalgarno, D. C.; van
Schravandijk, M. R.; Violette, S. M.; Liou, S.; Adams, S.;
Ram, M. K.; Keats, J. A.; Weigle, M.; Sawyer, T. K.;
Weigele, M. Bioorg. Med. Chem. Lett. 2003, 13, 3063.
8. (a) Uludag, H. Curr. Pharm. Des. 2002, 8, 1929; (b) Pierce;
William, M.; Waite; Leonard, C. Soc. Exp. Biol. Med.
1987, 186(1), 96; (c) Gil, L.; Han, Y.; Opas, E. E.; Rodan,
G. A.; Ruel, R.; Gregory; Seedor, J.; Tyler, P. C.; Young,
R. N. Bioorg. Med. Chem. 1999, 7, 901.
Figure 10. (a) Hydrolysis of Trypdronate (blue) to release tryptophan
(red) in PBS (pH 7.4) at 37 ꢁC. (b) Release of tryptophan from HAP/
Trypdronate under physiological conditions (PBS, pH 7.4, 37 ꢁC). The
maximum loading of Trypdronate per 100 mg HAP was calculated to
be 0.625 mg.
9. Fabulet, O.; Sturtz, G. Phosphorus, Sulfur Silicon Relat.
Elem. 1995, 101, 225.
10. Hirabayashi, H.; Takahashi, T.; Fujisaki, J.; Masunaga,
T.; Sato, S.; Hiroi, J.; Tokunaga, Y.; Kimura, S.; Hata, T.
J. Control. Release 2001, 70, 183.
molecule, too). However, the hydrolytic release mech-
anism of the active drug from the bisphosphonate
conjugate is likely to be identical.
In conclusion, we have demonstrated two options for
construction of hydrolytically activated chemotherapeu-
tic prodrugs containing a bisphosphonate bone-target-
ing moiety. The first option is applicable for drug
molecules with an available hydroxy group. The drug
is attached to the bisphosphonate component through
an ester-labile linkage. The second option is suitable
for drug molecules with available amine functional
group. In this case, a self-immolative linker is used to
join the drug and the bisphosphonate component
through a carbonate-labile linkage. The concept was
demonstrated using camptothecin and tryptophan. Both
prodrugs bound to HAP, a model for bone, and were
hydrolytically activated under physiological conditions.
In the Jurkat cell line, the prodrug Camdronate was
10-fold less toxic than free camptothecin. We are cur-
rently developing a suitable animal model for in vivo
evaluation of Camdronate.
11. Page, P. C. B.; McKenzie, M. J.; Gallagher, J. A. J. Org.
Chem. 2001, 66, 3704.
12. Page, P. C. B.; Moore, J. P. G.; Mansfield, I.; McKenzie,
M. J.; Bowler, W. B.; Gallagher, J. A. Tetrahedron 2001,
57, 1837.
13. Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmar, K. H.;
McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88,
3888.
14. Bomgaars, L.; Berg, S. L.; Blaney, S. M. Oncologist 2001,
6, 506.
15. Perry, R.; Amir, R. J.; Shabat, D. New J. Chem. 2007, 31,
1307.
16. Kubicek, V.; Rudovsky, J.; Kotek, J.; Hermann, P.;
Vander Elst, L.; Muller, R. N.; Kolar, Z. I.; Wolterbeek,
H. T.; Peters, J. A.; Lukes, I. J. Am. Chem. Soc. 2005, 127,
16477.
17. Dinaut, A. N.; Taylor, S. D. Chem. Commun. 2001, 15,
1386.
18. Jung, A.; Bisaz, S.; Fleisch, H. Calc. Tiss. Res. 1973, 11,
269.