10.1002/anie.201803828
Angewandte Chemie International Edition
COMMUNICATION
2018, DOI:10.1039/c7cs00566k; b) G. Lyu, C. G. Yoo, X. Pan, Biomass
Bioenergy, 2018, 108, 7-14.
again aromatized faster than the ortho, suggesting that the
selectivity to the meta aromatic can be kinetically controlled, as
discussed above. Reversely, from 2-methyl furan, the ortho
cycloadduct was more reactive (Table 4, entry 2).
[14] a) A. Maneffa, P. Priecel, J. A. Lopez-Sanchez, ChemSusChem 2016, 9,
1-14 ; b) A. E. Settle, L. Berstis, N. A. Rorrer, Y. Roman-Leshkóv, G. T.
Beckham, R. M. Richards, D. R. Vardon, Green Chem., 2017, 19, 3468-
3492; c) I. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfꢀtzenreuter, M.
Rose, R. Palkovits, Chem. Rev., 2016, 116, 1540-1599.
In conclusion, we report here that industrially relevant aromatic
chemicals, such as MXD, can be selectively synthesized from
furfural and acrylonitrile through a 100% carbon-economical route.
The pathway involves a Diels-Alder/aromatization sequence as a
key step. Importantly, we showed that (1) the aromatization step
could be catalyzed at low temperature by bases instead of acids,
thus avoiding the usually observed retro-Diels-Alder reaction, and
(2), by playing with the rate of the reactions, it was possible to
selectively drive the reaction to the meta aromatics. One should
note that, starting from furfural, all steps (protection,
DA/aromatization, deprotection and hydrogenation) are highly
selective and chemical intermediates can be directly engaged in
the next step without purification. Furthermore, water is released
as the sole by-product. Optimization of the process and DFT
calculations to rationalize and predict reaction outcomes are now
the topic of current investigations.
[15] a) Y. Hu, N. Li, G. Li, A. Wang, Y. Cong, X. Wang, T. Zhang,
ChemSusChem, 2017, 10, 2880-2885; b) Y. Hu, N. Li, G. Li, A. Wang, Y.
Cong, X. Wang, T. Zhang, Green Chem., 2017, 19, 1663-1667.
[16] Y. Cheng, G. W. Huber, Green Chem. 2012, 14, 3114-3125.
[17] J. J. Pacheco, J. A. Labinger, A. L. Sessions, M. E. Davis, ACS Catal.
2015, 5, 5904-5913.
[18] C. L. Williams, C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D. G. Vlachos,
R. F. Lobo, W. Fan, P. J. Dauenhauer, ACS Catal. 2012, 2, 935-939.
[19] I. F. Teixeira, B. T. W. Lo, P. Kostetskyy, M. Stamatakis, L. Ye, C. C.
Tang, G. Mpourmpakis, S. C. E. Tsang, Angew. Chem. Int. Ed. 2016, 55,
13061-13066.
[20] D. Wang, C. M. Osmundsen, E. Taarninig, J. A. Dumesic,
ChemCatChem 2013, 5, 1-8.
[21] N. Nikbin, P. T. Do, S. Caratzoulas, R. F. Lobo, P. J. Dauenhauer, J.
Catal. 2013, 297, 35-43.
[22] M. Shiramizu, F. D. Toste, Chem. Eur. J. 2011, 17, 12452-12457.
[23] N. Nikbin, S. Feng, S. Caratzoulas, D. G. Vlachos, J. Phys. Chem. C
2017, 118, 24415-24424.
[24] a) R. E. Patet, N. Nikbin, C. L. Williams, S. K. Green, C. Chang, W. Fei,
S. Caratzoulas, P. J. Dauenhauer, D. G. Vlachos, ACS Catal. 2015, 5,
2367-2375 ; b) S. Thiyagarajan, H. C. Genuino, J. C. van der Waal, E.
de Jong, B. M. Weckhuysen, J. van Haveren, P. C. A. Bruijnincx, D. S.
van Es, Angew. Chem. Int. Ed. 2016, 55, 1368-1371.
Acknowledgements
The authors are grateful to the CNRS, the University of Poitiers,
the French Ministry of Research and SOLVAY for their financial
support.
[25] Y. P. Wijaya, D. J. Suh, J. Jae, Catal. Commun. 2015, 70, 12-16.
[26] S. K. Green, R. E. Patet, N. Nikbin, C. L. Williams, C. Chang, J. Yu, R. J.
Gorte, S. Caratzoulas, W. Fei, D. G. Vlachos, P. J. Dauenhauer, Appl.
Catal. B: Environ. 2016, 180, 487-496.
Keywords: Furfural • Aromatics • Diels-Alder • Amination • DFT
[27] J. Kim, T. Kim, Y. Kim, R. Ryoo, S. Jeong, C. Kim, Appl. Catal. B: Environ.
2017, 206, 490-500.
[1]
[2]
a) P. Marion, B. Bernela, A. Piccirilli, B. Estrine, N. Patouillard, J. Guilbot,
F. Jérôme, Green Chem. 2017, 19, 4973-4989: b) R. Sheldon, Green
Chem., 2014, 16, 950-963.
[28] J. J. Pacheco, M. E. Davis, Proc. Natl. Acad. Sci. 2017, 111 (23), 8363-
8367.
[29] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López
Granados, Energy Environ. Sci. 2016, 9, 1144-1189; b) X. Li, P. Jia, T.
Wang, ACS Catal. 2016, 6 (11), 7621–7640; c) J.-P. Lange, E. van der
Heide, J. van Buijtenen, R. Price, ChemSusChem 2012, 5 (1), 150-156.
[30] Y. Tachibana, S. Kimura, K. Kasuya, Sci. Rep. 2015, 5, 8249.
[31] a) K. C. Lekhok, J. C. Kandoli, D. Prajapati, J. S. Sandhu, Ind. J. Chem.
1987, 26B, 374-375; b) C. Garcia-Astrain, A. Gandini, D. Coelho, I.
Mondragon, A. Retegi, A. Eceiza, M.A. Corcuera, N. Gabilondo, Eur.
Polym. J. 2013, 49, 3998-4007.
[3]
[4]
as selected comprehensive reviews see: a) A. V. Bridgwater, Biomass
Bioenergy 2012, 38, 68-94; b) C. Liu, H. Wang, A. M. Karim, J. Sun, Y.
Wang, Chem. Soc. Rev. 2014, 43 (22), 7594-7623; c) T. Dickerson, J.
Soria, Energies 2013, 1, 514-538; d) R. H. Venderbosch,
ChemSusChem 2015, 8 (8), 1306-1316 ; e) A. Zheng, L. Jiang, Z. Zhao,
Z. Huang, K. Zhao, G. Wei, H. Li, WIREs Energy Environ 2017, 6:e234.
doi: 10.1002/wene.234.
[32] a) N. Teramoto, M. Niwa, M. Shibata, Materials 2010, 3, 369-385; b) H.
Satoh, A. Mineshima, T. Nakamura, N. Teramoto, M. Shibata, React.
Funct. Polym. 2014, 76, 49-56; c) S. Takano, F. Ito, K. Ogasawara,
Pharm. Soc. Jpn., 1982, 102(2):153-161; b) N. Teramoto, Y. Arai, M.
Shibata, Carbohydr. Polym. 2006, 64, 78-84; K. Fischer, S. Hünig, J. Org.
Chem., 1987, 52, 564-569; d) A. Guidi, V. Theurillat-Moritz, P. Vogel,
Tetrahedron, 1996, 7(11), 3153-3162.
[5]
[6]
J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbach, R.
F. Lobo, G. W. Huber, J. Catal. 2011, 279, 257-268.
J. Jae, G. A. Tompsett, Y. Lin, T. R. Carlson, J. Shen, T. Zhang, B. Yang,
C. E. Wyman, W. C. Conner, G. W. Huber, Energy Environ. Sci. 2010, 3,
358-365.
[7]
[8]
[9]
T. R. Carlson, Y. Cheng, J. Jae, G. W. Huber, Energy Environ. Sci. 2011,
4, 145-161.
[33] Y. Bai, M. De Bruyn, J. H. Clark, J. R. Dodson, T. J. Farmer, M. Honoré,
I. D. V. Ingram, M. Naguib, Adrian C. Whitwood, M. North, Green Chem.
2016, 18, 3945-3948.
T. R. Carlson, J. Jae, Y. Lin, G. A. Tompsett, G. W. Huber, J. Catal. 2010,
270, 110-114.
[34] G. Çayli, S. Kusefoglu, J. Appl. Polym. Sci. 2011, 120, 1707-1712.
[35] a) J. A. Mikroyannidis, J. Appl. Polym. Sci. A Polym. Chem. 1992, 30,
125-132; b) M. Oikawa, M. Ikoma, M. Sasaki, Tet. Lett. 2005, 46, 415-
418; c) F. I. Zubkov, I. K. Airiyan, J. D. Ershova, T. R. Galeev, V. P.
Zaytsev, E. V. Nikitina, A. V. Varlamov, RSC Adv. 2012, 2, 4103-4109.
[36] S. Higson, F. Subrizi, T. D. Sheppard, H. C. Hailes, Green Chem. 2016,
18, 1855-1858.
T. R. Carlson, J. Jae, G. W. Huber, ChemCatChem 2009, 1, 107-110.
[10] T. R. Carlson, G. A. Tompsett, W. C. Conner, G. W. Huber, Top Catal
2009, 52, 241-252.
[11] T. R. Carlson, T. P. Vispute, G. W. Huber, ChemSusChem 2008, 1, 397-
400.
[12] T. W. Lyons, D. Guironnet, M. Findlater, M. Brookhart, J. Am. Chem. Soc.
2012, 134 (38), 15708–15711.
report-2017-10576122
[13] As recent selected reviews see a) W. Schutyser, T. Renders, S. Van den
Bosch, S.-F. Koelewijn, G. T. Beckham, B. F. Sels, Chem. Soc. Rev.
This article is protected by copyright. All rights reserved.