Chiral auxiliary driven acetate-type aldol reactions have
proven more difficult than their propionate counterpart.
N-Acetate oxazolidinones and other chiral auxiliaries did not
provide the diastereoselectivities achieved with the corre-
sponding N-propionates.6 Several methods and strategies
have been realized to solve this problem. Among them,
Nagao’s acetate aldol reaction with tin enolate of N-acetyl
thiazolidinethione delivered high diastereoselectivities.7 How-
ever, the high price and irreproducibility of the tin triflate
prompted others to investigate other Lewis acids for this aldol
reaction. The more economic titanium(IV) enolate was found
to be highly efficient.8 More sterically encumbered thiazo-
lidinethiones and oxazolidinethiones have also been prepared
to deliver higher diastereoselectivities, albeit at a higher price
for starting materials and or longer reaction sequences.9 In
this paper, we report a new thiazolidinethione analogue of
indene-based Ghosh’s oxazolidinone,10 which was easily
prepared from commercially available trans-1-amino-2-
indanol.11 The rigidity and nature of this chiral auxiliary
promised to deliver high diastereoselectivities in aldol
reactions and crystalline products.
A general procedure for the synthesis of chiral oxazolidi-
nethiones and thiazolidinethiones is to treat 1,2-aminols
derived from R-amino acids with carbon disulfide and base.12
Oxazolidinethiones are obtained preferentially when a mild
base is employed, and thiazolidinethiones can be prepared
in excellent yields when a stronger base is used instead.
However, when this latter method was applied to trans-
amino-2-indanol 1,13 thiazolidinethione 2 was obtained in
poor yield. Instead, we found that the thiazolidinethione 2
was obtained in very good yield when the trans-aminoindanol
1 was first treated with sulfuric acid, and then the crude
sulfated indanol was treated with potassium ethyl xanthate
and aqueous sodium hydroxide and the mixture heated to
75 °C for 16 h, Scheme 1.14 Using this protocol, only one
Scheme 1
purification by column chromatography was required to
obtain clean thiazolidinethione 2.
Acylation of the chiral auxiliary was accomplished in very
good yields by treating the thiazolidinethione with the
corresponding acyl chloride or by coupling with the car-
boxylic acid.15 The titanium enolate derived from N-
propionate derivative 4 was added to cinnamaldehyde to test
its diastereoselectivity using the conditions reported by
Crimmins, Scheme 2.4a Indeed, when 1 equiv of titanium
Scheme 2
(4) (a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am. Chem. Soc.
1997, 119, 7883-7884. (b) Crimmins, M. T.; King, B. W.; Tabet, E. A.;
Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.
(5) (a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am.
Chem. Soc. 2002, 124, 392-393. (b) Evans, D. A.; Downey, C. W.; Shaw,
J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127-1130. (c) Evans, D. A.; Shaw,
J. T. L’actualite´ Chimique 2003, 35-38.
(6) (a) Nerz-Stormes, M.; Thornton, E. R. Tetrahedron Lett. 1986, 27,
897-900. (b) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew.
Chem., Int. Ed. 1985, 24, 1-30. (c) Braun, M. Angew. Chem., Int. Ed.
1987, 26, 24-37.
(7) (a) Nagao, Y. Yamada, S.; Kumagai, T.; Ochiai, M.; Fujita, E. J.
Chem. Soc., Chem. Commun. 1985, 1418-1419. (b) Nagao, Y.; Hagiwara,
Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org.
Chem. 1986, 51, 2391-2393. (c) Vela´zquez, F.; Olivo, H. F. Curr. Org.
Chem. 2002, 6, 303-340. (d) Ort´ız, A.; Sansinenea, E. J. Sulfur Chem.
2007, 28, 109-147.
(8) (a) Yan, T.-H.; Hung, A.-W.; Lee, H.-C.; Chang, C.-S.; Liu, W.-H.
J. Org. Chem. 1995, 60, 3301-3306. (b) Gonza´lez, A.; Aiguade´, J.; Urp´ı,
F.; Vilarrasa, J. Tetrahedron Lett. 1996, 37, 8949-8952. (c) Crimmins, M.
T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029-2032. (d) Romero-Ortega,
M.; Colby, D. A.; Olivo, H. F. Tetrahedron Lett. 2002, 43, 6439-6441.
(e) Hodge, M. B.; Olivo, H. F. Tetrahedron 2004, 60, 9397-9403.
(9) (a) Guz, N. R.; Phillips, A. J. Org. Lett. 2002, 4, 2253-2256. (b)
Zhang, Y.; Phillips, A. J.; Sammakia, T. Org. Lett. 2004, 6, 23-25. (c)
Zhang, Y.; Sammakia, T. Org. Lett. 2004, 6, 3139-3141. (d) Crimmins,
M. T.; Shamszad, M. Org. Lett. 2007, 9, 149-152.
tetrachloride and 1 equiv of Hunig’s base were employed, a
closed transition state where both the aldehyde and the
auxiliary are coordinated to the titanium enolate delivered
the “non-Evans” syn-aldol product 5 in 92% yield (98:2 dr).
When 2.5 equiv of (-)-sparteine and 1 equiv of titanium
tetrachloride were employed, an open transition state where
the chiral auxiliary is not coordinated to the titanium enolate
(10) Ghosh, A. K.; Duong, T. T.; McKee, S. P. J. Chem. Soc., Chem.
Commun. 1992, 1673-1674.
(11) (1R,2R)-trans-1-Amino-2-indanol and (1S,2S)-trans-1-amino-2-in-
danol are available from Aldrich, catalog nos. 663336 and 663344.
(12) Delaunay, D.; Toupet, L.; Le Corre, M. J. Org. Chem. 1995, 60,
6604-6607.
(13) Kozhushkov, S. I.; Yufit, D. S.; de Meijere, A. AdV. Synth. Catal.
2005, 347, 255-265.
(14) (a) Yamada, S.; Sugaki, T.; Matsuzaki, K. J. Org. Chem. 1996, 61,
5932-5938. (b) Dewey, C. S.; Bafford, R. A. J. Org. Chem. 1965, 30,
495-500.
(15) Andrade, C. K. Z.; Rocha, R. O.; Vercillo, O. E.; Silva, W. A.;
Matos, R. A. F. Synlett 2003, 15, 2351-2352.
618
Org. Lett., Vol. 10, No. 4, 2008