Angewandte
Chemie
dented heavier congeners of cycloproparene derivatives, see:
that the structural features of the corresponding tellurirane
derivatives of heavier Group 15 elements differ from those of
heavier group 14 elements.
In summary, we have synthesized the first stable tellura-
distibirane, 4, and telluradibismirane, 5, by a tellurization
a) K. Hatano, N. Tokitoh, N. Takagi, S. Nagase, J. Am. Chem.
Soc. 2000, 122, 4829; b) N. Tokitoh, K. Hatano, T. Sasaki, T.
Sasamori, N. Takeda, N. Takagi, S. Nagase, Organometallics
2002, 21, 4309; c) T. Tajima, K. Hatano, T. Sasaki, T. Sasamori, N.
Takeda, N. Tokitoh, Chem. Lett. 2003, 32, 220; d) T. Tajima, K.
Hatano, T. Sasaki, T. Sasamori, N. Takeda, N. Tokitoh, N. Takagi,
S. Nagase, J. Organomet. Chem. 2003, 686, 118. In addition,
unique three-membered ring systems of heavier Group 14
elements have been reported as a review, see: A. Sekiguchi,
V. Y. Lee, Chem. Rev. 2003, 103, 1429.
=
reaction of the reactive double-bond systems, BbtSb SbBbt
=
=
and BbtBi BiBbt, by using (nBu)3P Te as a tellurization
reagent. We have demonstrated here that telluradistibirane
and telluradibismirane derivatives, which are three-mem-
bered ring compounds composed of much heavier elements,
Sb, Bi, and Te, can be isolated without any oligomerization by
using an appropriate steric protecting group and synthetic
method. Further investigation of the physical and chemical
properties of the newly obtained three-membered ring
systems 4 and 5 is currently in progress.
[3] For a review of selenirenes and tellurirenes, see: N. Tokitoh, W.
Ando, N. Choi in Comprehensive Heterocyclic Chemistry II
(Eds.: A. R. Katritzky, C. W. Rees, E. F. Scriven), Vol. 1A (Ed.:
A. Padwa), Pergamon, Oxford, 1996, pp. 173 – 240; N. Tokitoh,
W. Ando in Science of Synthesis, Houben-Weyl Methods of
Molecular Transformations, Vol. 9 (Eds.: D. Belllus, S. V. Ley, R.
Noyori, M. Regitz, E. Schaumann, I. Shinkai, E. J. Thomas, B. M.
Trost, M. Regitz, G. Maas), Thieme, Stuttgart, 2001, pp. 61 – 65.
[4] a) R. P. K. Tan, G. R. Gillette, D. R. Powell, R. West, Organo-
metallics 1991, 10, 546; b) A. Schꢁfer, M. Weidenbruch, W. Saak,
S. Pohl, H. Marsmann, Angew. Chem. Int. 1991, 103, 873; Angew.
Chem. Int. Ed. Engl. 1991, 30, 834; c) A. Schꢁfer, M. Weiden-
bruch, W. Saak, S. Pohl, H. Marsmann, Angew. Chem. 1991, 103,
978; Angew. Chem. Int. Ed. Engl. 1991, 30, 962.
[5] T. Sasamori, Y. Arai, N. Takeda, R. Okazaki, Y. Furukawa, M.
Kimura, S. Nagase, N. Tokitoh, Bull. Chem. Soc. Jpn. 2002, 75,
661.
[6] N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H.
Uekusa, Y. Ohashi, J. Am. Chem. Soc. 1998, 120, 433.
[7] N. Tokitoh, Y. Arai, R. Okazaki, S. Nagase, Science 1997, 277, 78.
[8] T. Sasamori, N. Takeda, N. Tokitoh, J. Phys. Org. Chem. 2003, 16,
450.
Experimental Section
=
4: Addition of nBu3P Te (33 mg, 0.10 mmol) to a solution of 1
(70.4 mg, 0.05 mmol) in benzene (2 mL) at room temperature, led to
the immediate precipitation of an orange powder. After the reaction
mixture had been left to stand for 2 h, telluradistibirane 4 was
separated by filtration, and then further purified by GPLC (40 mg,
0.025 mmol, 50%). 4: orange crystals, m.p. 1618C (decomp);
1H NMR (300 MHz, [D6]benzene): d = 0.33 (s, 54H), 0.36 (s, 36H),
0.37 (s, 36H), 2.87 (s, 4H), 6.96 ppm (s, 4H); 13C NMR (75 MHz,
[D6]benzene): d = 2.09 (q), 2.28 (q), 5.65 (q), 22.21 (s), 37.69 (d),
126.90 (d), 138.33 (s), 145.83 (s), 150.88 ppm (s); 125Te NMR (94 MHz,
[D8]toluene): d = À622.3 ppm; UV/Vis (hexane): lmax (e) = 458 (680),
390 (3100), 346 nm (8500); HRMS (FAB): m/z: 1619.4440([M+H]+),
calcd for C60H135121Sb2Si14130Te ([M+H]+): 1619.4472; elemental
analysis calcd (%) for C60H134Sb2Si14Te: C 44.48, H 8.34; found: C
44.23, H 8.23.
[9] M. Yoshifuji, K. Shibayama, N. Inamoto, Chem. Lett. 1984, 603.
[10] N. Tokitoh, T. Sasamori, R. Okazaki, Chem. Lett. 1998, 725.
1
[11] 3: dark-green crystals, m.p. 238.6–240.08C (decomp); H NMR
=
5: nBu3P Te (23 mg, 0.06 mmol) was added to a solution of 2
(300 MHz, [D6]benzene): d = 0.34 (s, 72H), 0.35 (s, 54H), 3.05 (s,
4H), 7.05 ppm (s, 4H); 125Te NMR (94 MHz, [D6]benzene): d =
328.7 ppm; HRMS (FAB): m/z: 1505.5448 ([M+H]+), calcd for
C60H135Si14128Te130Te 1505.5443; elemental analysis calcd (%) for
C60H134Si14Te2: C 47.91, H 8.98; found: C 48.20, H 9.05; the X-ray
crystallographic analysis of 3 will be described elsewhere.
[12] For example, the synthesis of an alkylidenetelluragermirane
derivative with tributylphosphine telluride has been reported;
see: K. Kishikawa, N. Tokitoh, R. Okazaki, Organometallics
1997, 16, 5127.
(49.0 mg, 0.03 mmol) in benzene (2 mL) at room temperature. The
color of the reaction mixture immediately changed to dark brown.
After the resulting suspension had been stirred for 2 h, the reaction
mixture was filtered, and the residue was washed with hexane
(20 mL) to afford brown crystals of telluradibismirane 5 (23.3 mg,
0.013 mmol, 43%). 5: brown crystals, m.p. 1568C (decomp); 1H NMR
(400 MHz, [D6]benzene): d = 0.33 (s, 36H), 0.34 (s, 54H), 0.36 (s,
36H), 2.29 (s, 4H), 7.20 ppm (s, 4H); 13C NMR (100 MHz, [D6]ben-
zene): d = 2.31 (q), 2.41 (q), 5.65 (q), 22.10 (s), 43.15 (d), 126.54 (d),
145.08 (s), 151.68 (s), 161.38 ppm (s); UV/Vis (hexane): lmax (e) = 521
(2100), 450 (3200), 338 nm (18700); HRMS (FAB): m/z: 1795.6004
([M+H]+), calcd for C60H135Bi2Si14130Te ([M+H]+): 1795.6004; ele-
mental analysis calcd (%) for C60H134Bi2Si14 Te: C 40.16, H 7.53;
found: C 40.12, H 7.48.
[13] Treatment of 1 with S8 in benzene afforded the corresponding
1,3,2,4-dithiadistibolane,
1,2,4,3,5-trithiadistibolane,
and
1,2,3,5,4,6-tetrathiadistibinane derivatives; see: T. Sasamori, E.
Mieda, N. Takeda, N. Tokitoh, Chem. Lett. 2004, 33, 104.
[14] Crystal data for 4 (C60H134Sb2Si14Te): Mr = 1620.03, T= 103(2) K,
monoclinic, C2/c (no. 15), a = 38.348(3), b = 9.2753(5), c =
Received: September 27, 2004
Revised: December 12, 2004
Published online: May 20, 2005
47.689(3) ꢀ, b = 92.732(3)8, V= 16943.2(18) ꢀ3, Z = 8, 1calcd
=
1.270 gcmÀ3, m = 1.205 mmÀ1, l = 0.71070 ꢀ, 2qmax = 50.0, 51832
measured reflections, 13961 independent reflections, 793 refined
parameters, GOF = 1.159, R1 = 0.0658 and wR2 = 0.1420 [I >
2s(I)], R1 = 0.0757 and wR2 = 0.1480 (for all data), largest
difference peak and hole 3.312 and À2.129 eꢀÀ3, respectively,
(around Sb and Te atoms); crystal data for 5 (C60H134Bi2Si14Te):
Mr = 1794.49, T= 103(2) K, monoclinic, C2/c (no. 15), a =
39.199(2), b = 9.2798(3), c = 47.120(2) ꢀ, b = 92.517(2)8, V=
17123.9(13) ꢀ3, Z = 8, 1calcd = 1.392 gcmÀ3, m = 4.666 mmÀ1, l =
0.71070 ꢀ, 2qmax = 51.0, 69668 measured reflections, 15682
independent reflections, 819 refined parameters, GOF = 1.121,
R1 = 0.0381 and wR2 = 0.0717 [I > 2s(I)], R1 = 0.0433 and wR2 =
0.0736 (for all data), largest difference peak and hole 2.230 and
À1.456 eꢀÀ3, respectively, (around Bi and Te atoms). CCDC-
Keywords: chalcogenides · heterocycles · multiple bonds ·
.
strained molecules · X-ray diffraction
[1] For a review of three-membered heterocycles, see: Comprehen-
sive Heterocyclic Chemistry II (Eds.: A. R. Katritzky, C. W. Rees,
E. F. Scriven), Vol. 1A (Ed.: A. Padwa), Pergamon, Oxford,
1996.
[2] We have recently reported the synthesis and structures of the
heavier analogues of a cyclopropabenzene, sila- and germa
cyclopropabenzenes and bis(silacyclopropa)benzenes, unprece-
Angew. Chem. Int. Ed. 2005, 44, 3717 –3720
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3719