Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
tentative proof for our hypothesis of para-quinone type
intermediate was realized when the substrate 1ja (a structural
isomer of 1j) lacking the aniline part of the aromatic ring was
subjected to our protocol (Scheme 2, eq 6). The reaction did
not work because para-quinone type intermediate is not
possible on benzamide aromatic ring.
DOI: 10.1039/C9CC09824K
2009, 48, 5094.
2
(a) A. Dey, S. K. Sinha, T. K. Achar and D. Maiti, Angew. Chem.
Int. Ed., 2019, 58, 10820. (b) A. Dey, S. Maity, and D. Maiti,
Chem. Commun., 2016, 52, 12398.
3
(a) M. Li, M. Shang, H. Xu, X. Wang, H.-X. Dai and J.-Q. Yu,
Org. Lett., 2019, 21, 540. (b) L. Wan, N. Dastbaravardeh, G. Li
and J.-Q. Yu, J. Am. Chem. Soc., 2013, 135, 18056. (c) D.
Leow, G. Li, T.-S. Mei and J.-Q. Yu, Nature, 2012, 486, 518.
(a) T. K. Achar, X. Zhang, R. Mondal, M. S. Shanavas, S. Maiti,
S. Maity, N. Pal, R. S. Paton and D. Maiti, Angew. Chem. Int.
Ed., 2019, 58, 10353. (b) U. Dutta, S. Maiti, S. Pimparkar, S.
Maiti, L. R. Gahan, E. H. Krenske, D. W. Lupton and D. Maiti,
Chem. Sci., 2019, 10, 7426. (c) S. Bag, T. Patra, A. Modak, A.
Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A.
4
5
Hazra, M. Bera and D. Maiti, J. Am. Chem. Soc., 2015, 137
11888.
,
(a) D. N. Garad, A. B. Viveki and S. B. Mhaske, J. Org. Chem.,
2017, 82, 6366. (b) L. Zheng and R. Hua, Chem. Rec., 2017,
17, 1. (c) H. M.-F. Viart, A. Bachmann, W. Kayitare and R.
Sarpong, J. Am. Chem. Soc., 2017, 139, 1325.
Scheme 3 Plausible Mechanism
6
(a) D. N. Garad and S. B. Mhaske, J. Org. Chem., 2019, 84,
1863. (b) A. B. Viveki and S. B. Mhaske, J. Org. Chem., 2018,
83, 8906.
(a) R. Das, G. S. Kumar and M. Kapur Eur. J. Org. Chem., 2017,
2017 (37), 5439. (b) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen and
J.-Q. Yu, Angew. Chem. Int. Ed., 2016, 55, 10578.
C. Ueda, H. Ohmori, K. Ueno, Y. Hamada, S. Tatsumi and M.
Mausi, Chem. Pharm. Bull., 1985, 33, 1407.
Based on the literature survey,9b,j,13 and the control
experiments (Scheme 2), a plausible mechanism via a radical
7
pathway has been depicted in Scheme 3. Anilide
1 first
chelates with a copper catalyst to form complex [I], which
converts to amidyl radical intermediate [II] in the presence of
APS. The amidyl radical intermediate transforms to a stable
para-quinone type imine radical intermediate [III]. A radical
coupling between intermediates [II] and [III] provides the
intermediate [IV], which on aromatization furnish the desired
8
9
(a) A. Ruffoni, F. Juliá, T. D. Svejstrup, A. J. McMillan, J. J.
Douglas and D. Leonori, Nature, 2019, 11, 426. (b) J. Xu, K.
Du, J. Shen, C. Shen, K. Chai and P. Zhang, ChemCatChem,
2018, 17, 2018. (c) G. N. Hermann and C. Bolm, ACS Catal.,
2017, 7, 4592. (d) J. Liu, K. Wu, T. Shen, Y. Liang, M. Zou, Y.
Zhu, X. Li, X. Li and N. Jiao, Chem. Eur. J., 2017, 23, 563. (e) L.
products 2. The copper catalyst is again regenerated in the
Legnani, G. P. Cerai and B. Morandi ACS Catal., 2016,
6,
presence of the oxidant APS. The proposed mechanism
provides important starting points for a detailed investigation
of the mechanism.
8162. (f) M. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess,
Z. Ma, L. Kürti and J. R. Falck, Science, 353, 1144. (g) H. Kim,
K. Shin and S. Chang, J. Am. Chem. Soc., 2014, 136, 5904. (h)
M. Shang, S. Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc.,
2014, 136, 3354. (i) R. Shrestha, P. Mukherjee, Y. Tan, Z. C.
Litman and J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 8480.
(j) K. Sun, Y. Li, T. Xiong, J. Zhang and Q. Zhang, J. Am. Chem.
Soc., 2011, 133, 1694.
In conclusion, we have developed a unique process for
para-selective C─H functionalization leading to amidation
/dimerization of anilide derivatives. The developed protocol is
highly selective as the dimerization through C─N bond
formation occurs specifically on aniline part of the anilide.
Preliminary mechanistic investigation demonstrates that the
reaction follows a radical pathway. A broad substrate scope
has been demonstrated utilizing an inexpensive copper
catalyst. The obtained products are potential precursors for
the synthesis of bioactive heterocyclic scaffolds. Currently, we
are exploring the protocol for C─H functionalization of anilide
derivatives with other reacting partners leading to C─C as well
as C─X bond formation.
10 (a) Y. Zhao, B. Huang, C. Yang, B. Li, B, Gou and W. Xia, ACS
Catal., 2017, , 2446. (b) A. A. Kantak, S. Potavathri, R. A.
7
Barham, K. M. Romano and B. DeBoef, J. Am. Chem. Soc.,
2011, 133, 19960.
11 (a) M. Kumar, S. Verma, P. K. Mishra and A. K. Verma, J. Org.
Chem., 2019, 84, 8067. (b) J.-P. Wan and Y. Jing, Beilstein J.
Org. Chem., 2015, 11, 2209. (c) B. Berzina, I. Sokolovs and E.
Suna, ACS Catal., 2015, 5, 7008. (d) Q. Li, S.-Y. Zhang, G. He,
Z. Ai, W. A. Nack and G. Chen, Org. Lett., 2014, 16, 1764. (e)
B. L. Tran, M. Driess and J. F. Hartwig, J. Am. Chem. Soc.,
2014, 136, 2555. (f) A. John and K. M. Nicholas, J. Org.
Chem., 2011, 76, 4158.
A.B.V. thanks CSIR-New Delhi, and D.N.G. thanks UGC-New
Delhi, for the research fellowship. S.B.M. gratefully
acknowledges generous financial support from DST-SERB, New
Delhi.
12 (a) L. Li, J. Ge, L. Wang, B. Guo and P. X. Ma, J. Mater. Chem.
B., 2014, 2, 6119. (b) S. P. Surwade, S. R. Agnihotra, V. Dua,
N. Manohar, S. Jain, S. Ammu and S. K. Manohar, J. Am.
Chem. Soc., 2009, 131, 12528. (c) K. Saito and T. Hirao,
Tetrahedron, 2002, 58, 7491.
Conflicts of interest
There are no conflicts to declare.
13 (a) D. Liang, Y. Li, S. Gao, R. Li, X. Li, B. Wang and H. Yang,
Green Chem., 2017, 19, 3344. (b) S. Liang, M. Bolte and G.
Manolikakes, Chem. Eur. J., 2017, 23, 96. (c) P. Xiong, F. Xu,
X.-Y., Qian, Y. Yohannes, J. Song, X. Lu, H.-C. Xu, Chem. Eur. J.
2016, 22, 4379. (d) G. Brasche and S. L. Buchwald, Angew.
Chem., Int. Ed., 2008, 47, 1932.
Notes and references
1
(a) P. Gandeepan, T. ller, D. Zell, G. Cera, S. Warratz and L.
Ackermann, Chem. Rev., 2019, 119, 2192. (b) H. M. L. Davies
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins