CH2Cl2); vmax (CDCl3)/cm−1 3256 (NH amide), 3068 (CH aro-
matic), 2942 (CH), 2861 (CH), 1719 (CvO ketone), 1638
(CvO amide), 1553 (CvC aromatic); δH (400 MHz, CDCl3)
7.40 (2H, d, J = 8.0 Hz, CBrCH), 7.09 (2H, d, J = 8.5 Hz,
CBrCHCH), 6.35 (1H, br s, NH amide), 4.38 (1H, ddd, J = 12.5
Hz, 6.5 Hz, 6.5 Hz, NHCH), 3.45 (2H, s, CH2C(vO)), 2.55
(1H, ddddd, J = 6.0 Hz, 6.0 Hz, 3.0 Hz, 3.0 Hz, 3.0 Hz),
2.46–2.40 (1H, m), 2.34–2.25 (1H, m), 2.10–2.02 (1H, m),
1.83–1.75 (1H, m), 1.73–1.65 (1H, m), 1.54 (1H, qt, J = 13.5
Hz, 4,5 Hz), 1.23 (1H, qd, J = 12.5 Hz, 4.5 Hz); δC (100 MHz;
CDCl3) 208.0 (CvO ketone), 170.0 (CvO amide), 134.0
(CBrCHCHC), 132.4 (CBrCH), 131.4 (CBrCHCH), 121 (CBr),
58.6 (NHCH), 43.4 (CH2C(vO)), 41.5 (NHCHC(vO)CH2),
35.7 (CH2), 28.4 (CH2), 24.4 (CH2); LCMS (ES+) (MeCN)
312.0 (M + H)+ for 81Br, 313.03; m.p. 116–118 °C (1 : 3
EtOAc–CH2Cl2).
21 R. Popat, S. A. Crusz and S. P. Diggle, Br. Med. Bull., 2008, 87, 63–75.
22 S. P. Diggle, K. Winzer, S. R. Chhabra, S. R. Chhabra, K. E. Worrall,
M. Camara and P. Williams, Mol. Microbiol., 2003, 50, 29–43.
23 J. Hodgkinson, S. D. Bowden, W. R. J. D. Galloway, D. R. Spring and
M. Welch, J. Bacteriol., 2010, 192, 3833–3837.
24 J. T. Hodgkinson, W. R. J. D. Galloway, S. Saraf, I. R. Baxendale,
S. V. Ley, M. Ladlow, M. Welch and D. R. Spring, Org. Biomol. Chem.,
2011, 9, 57–61.
25 P. Grossi and D. Dalla Gasperina, Expert Rev. Anticancer Ther., 2006, 4,
639–662.
26 S. Lanini, S. D’Arezzo, V. Puro, L. Martini, F. Imperi, P. Piselli,
M. Montanaro, S. Paoletti, P. Visca and G. Ippolito, PLoS One, 2011, 6.
27 K. M. Smith, Y. G. Bu and H. Suga, Chem. Biol., 2003, 10, 81–89.
28 G. J. Jog, J. Igarashi and H. Suga, Chem. Biol., 2006, 13, 123–128.
29 N. A. Whitehead, A. M. L. Barnard, H. Slater, N. J. L. Simpson and
G. P. C. Salmond, FEMS Microbiol. Rev., 2001, 25, 365–404.
30 C. Attila, A. Ueda and T. K. Wood, Appl. Microbiol. Biotechnol., 2008,
78, 293–307.
31 S. P. Diggle, P. Cornelis, P. Williams and M. Camara, Int. J. Med. Micro-
biol., 2006, 296, 83–91.
32 C. Kim, J. Kim, H. Y. Park, J. H. Lee, H. J. Park, C. K. Kim and J. Yoon,
Appl. Microbiol. Biotechnol., 2009, 83, 1095–1103.
33 M. E. Skindersoe, M. Alhede, R. Phipps, L. Yang, P. O. Jensen,
T. B. Rasmussen, T. Bjarnsholt, T. Tolker-Nielsen, N. Hoiby and
M. Givskov, Antimicrob. Agents Chemother., 2008, 52, 3648–3663.
34 M. Hentzer, K. Riedel, T. B. Rasmussen, A. Heydorn, J. B. Andersen, M.
R. Parsek, S. A. Rice, L. Eberl, S. Molin, N. Hoiby, S. Kjelleberg and
M. Givskov, Microbiology, 2002, 148, 87–102.
35 Recent evidence indicates that the quorum sensing hierarchy is more
complex than this model presents. See: V. Dekimpe and E. Deziel, Micro-
biology, 2009, 155, 712–723.
Acknowledgements
This work was supported by grants from the Engineering and
Physical Sciences Research Council, Biotechnology and Biologi-
cal Sciences Research Council, Medical Research Council,
Royal Society, Frances and Augustus Newman Foundation, and
Wellcome Trust. J.T.H is supported by an Medical Research
Council strategic priority studentship awarded to MW and DRS.
36 T. B. Rasmussen and M. Givskov, Microbiology, 2006, 152, 895–904.
37 M. J. Gambello, S. Kaye and B. H. Iglewski, Infect. Immun., 1993, 61,
1180–1184.
38 J. M. Brint and D. E. Ohman, J. Bacteriol., 1995, 177, 7155–7163.
39 M. Hentzer, H. Wu, J. B. Andersen, K. Riedel, T. B. Rasmussen,
N. Bagge, N. Kumar, M. A. Schembri, Z. J. Song, P. Kristoffersen,
M. Manefield, J. W. Costerton, S. Molin, L. Eberl, P. Steinberg,
S. Kjelleberg, N. Hoiby and M. Givskov, EMBO J., 2003, 22, 3803–
3815.
40 H. Wu, Z. Song, M. Hentzer, J. B. Andersen, S. Molin, M. Givskov and
N. Hoiby, J. Antimicrob. Chemother., 2004, 53, 1054–1061.
41 H. Giamarellou, Int. J. Antimicrob. Agents, 2010, 36, S50–S54.
42 K. M. Smith, Y. G. Bu and H. Suga, Chem. Biol., 2003, 10, 563–571.
43 D. M. Marsden, R. L. Nicholson, M. E. Skindersoe, W. R. J.
D. Galloway, H. F. Sore, M. Givskov, G. P. C. Salmond, M. Ladlow,
M. Welchd and D. R. Spring, Org. Biomol. Chem., 2010, 8, 5313–5323.
44 L. Y. W. Lee, T. Hupfield, R. L. Nicholson, J. T. Hodgkinson, X. B. Su,
G. L. Thomas, G. P. C. Salmond, M. Welch and D. R. Spring, Mol.
BioSyst., 2008, 4, 505–507.
Notes and references
1 W. R. J. D. Galloway, J. T. Hodgkinson, S. D. Bowden, M. Welch and
D. R. Spring, Chem. Rev., 2011, 111, 28–67.
2 M. E. Churchill and L. Chen, Chem. Rev., 2011, 111, 68–85.
3 A. M. Stevens, Y. Queneau, L. Soulere, S. von Bodman and
A. Doutheau, Chem. Rev., 2011, 111, 4–27.
4 S. Atkinson and P. Williams, J. R. Soc. Interface, 2009, 6, 959–978.
5 W. C. Fuqua, S. C. Winans and E. P. Greenberg, J. Bacteriol., 1994, 176,
269–275.
6 C. Fuqua, M. R. Parsek and E. P. Greenberg, Annu. Rev. Genet., 2001,
35, 439–468.
7 B. L. Bassler and R. Losick, Cell, 2006, 125, 237–246.
8 M. Boyer and F. Wisniewski-Dye, FEMS Microbiol. Ecol., 2009, 70,
1–19.
9 C. E. McInnis and H. E. Blackwell, Bioorg. Med. Chem., 2011, 19,
4812–4819.
10 T. Praneenararat, G. D. Geske and H. E. Blackwell, Org. Lett., 2009, 11,
4600–4603.
11 J. E. Gonzalez and N. D. Keshavan, Microbiol. Mol. Biol. Rev., 2006, 70,
859–875.
45 F. G. Glansdorp, G. L. Thomas, J. J. K. Lee, J. M. Dutton,
G. P. C. Salmond, M. Welch and D. R. Spring, Org. Biomol. Chem.,
2004, 2, 3329–3336.
46 G. D. Geske, R. J. Wezeman, A. P. Siegel and H. E. Blackwell, J. Am.
Chem. Soc., 2005, 127, 12762–12763.
47 M. Boukraa, M. Sabbah, L. Soulere, M. L. El Efrit, Y. Queneau and
A. Doutheau, Bioorg. Med. Chem. Lett., 2011, 21, 6876–6879.
48 M. Frezza, L. Soulere, S. Reverchon, N. Guiliani, C. Jerez, Y. Queneau
and A. Doutheau, Bioorg. Med. Chem., 2008, 16, 3550–3556.
49 M. Frezza, S. Castang, J. Estephane, L. Soulere, C. Deshayes,
B. Chantegrel, W. Nasser, Y. Queneau, S. Reverchon and A. Doutheau,
Bioorg. Med. Chem., 2006, 14, 4781–4791.
50 A notable example of a similar study was recently reported by McInnis
and Blackwell9. In this elegant piece of work, the effects of various AHL
mimics containing different head and tail groups on LuxR-type quorum
sensing was examined. These authors first coined the phrase ‘chimeric
compounds’ to refer to such AHL-type analogues. However, all com-
pounds tested the report of McInnis and Blackwell9 were structurally
different to the compounds revealed in this work.
51 Non-native AHLs capable of modulating quorum sensing at the LuxR-
type receptor level can generally be thought of as being ‘semi-rationally
designed’ molecules. Such agents are not typically designed de novo by
researchers, instead being based upon the structure of a known autoindu-
cer. Typically AHL-based inhibitors are presumed to act in a competitive
fashion (that is, they target the binding site occupied by the natural AHL
12 P. Williams, Microbiology, 2007, 153, 3923–3938.
13 P. Williams, K. Winzer, W. C. Chan and M. Camara, Philos.
Trans. R. Soc. London, Ser. B, 2007, 362, 1119–1134.
14 M. Sanchez-Contreras, W. D. Bauer, M. S. Gao, J. B. Robinson and J.
A. Downie, Philos. Trans. R. Soc. London, Ser. B, 2007, 362, 1149–
1163.
15 G. D. Geske, J. C. O’Neill and H. E. Blackwell, Chem. Soc. Rev., 2008,
37, 1432–1447.
16 G. D. Geske, J. C. O’Neill, D. M. Miller, M. E. Mattmann and H.
E. Blackwell, J. Am. Chem. Soc., 2007, 129, 13613–13625.
17 J. T. Hodgkinson, M. Welch and D. R. Spring, ACS Chem. Biol., 2007, 2,
715–717.
18 D. Smith, J. H. Wang, J. E. Swatton, P. Davenport, B. Price,
H. Mikkelsen, H. Stickland, K. Nishikawa, N. Gardiol, D. R. Spring and
M. Welch, Sci. Prog., 2006, 89, 167–211.
19 S. R. Chhabra, B. Philipp, L. Eberl, M. Givskov, P. Williams and
M. Camara, Extracellular communication in bacteria, in Chemistry of
Pheromones and Other Semiochemicals II, ed. S. Schultz, Springer
Berlin, Heidelberg, Germany, 2005, vol. 240, pp. 279–315.
20 W. L. Ng and B. L. Bassler, Annu. Rev. Genet., 2009, 43, 197–222.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 6032–6044 | 6043